Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_2_a10, author = {A. E. Medvedev}, title = {Method of constructing an asymmetric human bronchial tree in normal and pathological cases}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {148--157}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a10/} }
TY - JOUR AU - A. E. Medvedev TI - Method of constructing an asymmetric human bronchial tree in normal and pathological cases JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - 148 EP - 157 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a10/ LA - en ID - MBB_2020_15_2_a10 ER -
A. E. Medvedev. Method of constructing an asymmetric human bronchial tree in normal and pathological cases. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 148-157. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a10/
[1] E. R. Weibel, Morphometry of the Human Lung, Springer Verlag, Berlin, 1963
[2] A. E. Medvedev, P. S. Gafurova, “Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases”, Mathematical Biology and Bioinformatics, 14:2 (2019), 635–648 | DOI
[3] Y. Zhao, B. B. Lieber, “Steady inspiratory flow in a model symmetric bifurcation”, ASME Journal of Biomechanical Engineering, 116 (1994), 488–496 | DOI
[4] Y. Zhao, C. T. Brunskill, B. B. Lieber, “Inspiratory and expiratory steady flow analysis in a model symmetrically bifurcating airway”, ASME Journal of Biomechanical Engineering, 119 (1997), 52–58 | DOI
[5] C. J. Hegedüs, I. Balásházy, Á. Farkas, “Detailed mathematical description of the geometry of airway bifurcations”, Respiratory physiology neurobiology, 141:1 (2004), 99–114 | DOI
[6] T. Heistracher, W. Hofmann, “Physiologically realistic models of bronchial airway bifurcations”, J. Aerosol Sci, 26:3 (1995), 497–509 | DOI
[7] C. Ertbruggen, C. Hirsch, M. Paiva, “Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics”, J. Appl. Physiol, 98 (2005), 970–980 | DOI
[8] A. F. Tena, P. Casan, J. Fernández, C. Ferrera, A. Marcos, “Characterization of particle deposition in a lung model using an individual path”, EPJ Web of Conferences, 45 (2013), 01079 | DOI
[9] A. F. Tena, J. Fernández, E. Álvarez, P. Casan, D. K. Walters, “Design of a numerical model of lung by means of a special boundary condition in the truncated branches”, International Journal for Numerical Methods in Biomedical Engineering, 33:6 (2017), e2830 | DOI | MR
[10] A. F. Tena, J. F. Francos, E. Álvarez, P. A. Casan, “A three dimensional in SILICO model for the simulation of inspiratory and expiratory airflow in humans”, Engineering Applications of Computational Fluid Mechanics, 9:1 (2015), 187–198 | DOI
[11] T. Gemci, V. Ponyavin, Y. Chen, H. Chen, R. Collins, “CFD Simulation of Airflow in a 17-Generation Digital Reference Model of the Human Bronchial Tree”, Series on Biomechanics, 23:1 (2007), 5–18
[12] T. Gemci, V. Ponyavin, Y. Chen, H. Chen, R. Collins, “Computational model of airflow in upper 17 generations of human respiratory tract”, Journal of Biomechanics, 41 (2008), 2047–2054 | DOI
[13] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “Modeling of human breath: conceptual and mathematical statements”, Mathematical Biology and Bioinformatics, 11:1 (2016), 64–80 | DOI | MR
[14] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, A. V. Babushkina, “Modelling dusty air flow in the human respiratory tract”, Ross. Zh. Biomekhaniki, 22:3 (2018), 301–314 | DOI
[15] J. Choi, Multiscale numerical analysis of airflow in CT-based subject specific breathing human lungs, PhD Dissertation, University of Iowa, Iowa, 2011, 259 pp.
[16] A. W. Ham, D. H. Cormack, Ham's Histology, Lippincott, Philadelphia, 1979
[17] Anthony L. Mescher, Junqueira's Basic Histology: Text and Atlas, 13th Edition, McGraw Hill Medical, New York, 2013, 560 pp.