Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_2_a1, author = {A. A. Glazkov and D. A. Kulikov and P. A. Glazkova}, title = {Assessing diagnostic accuracy of quantitative data in biomedical studies using descriptive statistics and standardized mean difference}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {416--428}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a1/} }
TY - JOUR AU - A. A. Glazkov AU - D. A. Kulikov AU - P. A. Glazkova TI - Assessing diagnostic accuracy of quantitative data in biomedical studies using descriptive statistics and standardized mean difference JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - 416 EP - 428 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a1/ LA - ru ID - MBB_2020_15_2_a1 ER -
%0 Journal Article %A A. A. Glazkov %A D. A. Kulikov %A P. A. Glazkova %T Assessing diagnostic accuracy of quantitative data in biomedical studies using descriptive statistics and standardized mean difference %J Matematičeskaâ biologiâ i bioinformatika %D 2020 %P 416-428 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a1/ %G ru %F MBB_2020_15_2_a1
A. A. Glazkov; D. A. Kulikov; P. A. Glazkova. Assessing diagnostic accuracy of quantitative data in biomedical studies using descriptive statistics and standardized mean difference. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 416-428. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a1/
[1] I. Yu. Boiko, D. S. Anisimov, L. L. Smolyakova, M. A. Ryazanov, “Podkhod k otboru znachimykh priznakov pri reshenii biomeditsinskikh zadach binarnoi klassifikatsii dannykh s mikrochipov”, Matematicheskaya biologiya i bioinformatika, 15:1 (2020), 4–19 | DOI
[2] D. Alemayehu, K. H. Zou, “Applications of ROC analysis in medical research: recent developments and future directions”, Academic Radiology, 19:12 (2012), 1457–1464 | DOI
[3] C. T. Nakas, B. Reiser, “Editorial for the special issue of “Statistical Methods in Medical Research” on “Advanced ROC analysis””, Statistical Methods in Medical Research, 27:3 (2018), 649–650 | DOI | MR
[4] D. W. Hosmer, S. Lemeshow, R. X. Sturdivant, Applied Logistic Regression, John Wiley Sons, 2013, 528 pp. | MR | Zbl
[5] A. Fronek, M. Allison, “Noninvasive evaluation of endothelial activity in healthy and diseased individuals”, Vascular and Endovascular Surgery, 48:2 (2014), 134–138 | DOI
[6] Z. Ovadia-Blechman, I. Avrahami, E. Weizman-Shammai, T. Sharir, M. Eldar, P. Chouraqui, “Peripheral microcirculatory hemodynamic changes in patients with myocardial ischemia”, Biomedicine Pharmacotherapy, 74 (2015), 83–88 | DOI
[7] D. A. Kulikov, A. A. Glazkov, Yu. A. Kovaleva, N. V. Balashova, A. V. Kulikov, “Perspektivy ispolzovaniya lazernoi dopplerovskoi floumetrii v otsenke kozhnoi mikrotsirkulyatsii krovi pri sakharnom diabete”, Sakharnyi diabet, 20:4 (2017), 279–285 | DOI
[8] G. V. Glass, “Integrating Findings: The Meta-Analysis of Research”, Review of Research in Education, 5:1 (1977), 351–379 | DOI
[9] J. Cohen, “A power primer”, Psychological Bulletin, 112:1 (1992), 155–159 | DOI
[10] T. Fawcett, “An introduction to ROC analysis”, Pattern Recognition Letters, 27:8 (2006), 861–874 | DOI | MR
[11] N. J. Perkins, E. F. Schisterman, “The inconsistency of “optimal” cut-points using two ROC based criteria”, American Journal of Epidemiology, 163:7 (2006), 670–675 | DOI
[12] X. Wan, W. Wang, J. Liu, T. Tong, “Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range”, BMC Medical Research Methodology, 14:135 (2014), 1–13
[13] R Core Team. R: A Language and Environment for Statistical Computing, , Vienna, 2013 (accessed 09.12.2020) http://www.R-project.org/
[14] D. K. Lee, “Alternatives to P value: Confidence interval and effect size”, Korean Journal of Anesthesiology, 69:6 (2016), 555–562 | DOI
[15] D. Kulikov, A. Glazkov, A. Dreval, Y. Kovaleva, D. Rogatkin, A. Kulikov, A. Molochkov, “Approaches to improve the predictive value of laser Doppler flowmetry in detection of microcirculation disorders in diabetes mellitus”, Clinical Hemorheology and Microcirculation, 70:2 (2018), 173–179 | DOI
[16] P. A. Glazkova, S. A. Terpigorev, D. A. Kulikov, N. A. Ivanova, A. A. Glazkov, “Puti povysheniya diagnosticheskoi znachimosti metoda lazernoi dopplerovskoi floumetrii pri otsenke kozhnoi mikrotsirkulyatsii u patsientov s arterialnoi gipertenziei”, Arterialnaya gipertenziya, 25:1 (2019), 74–83 | DOI | MR
[17] A. Cupisti, M. Rossi, S. Placidi, A. Fabbri, E. Morelli, G. Vagheggini, M. Meola, G. Barsotti, “Responses of the Skin Microcirculation to Acetylcholine in Patients with Essential Hypertension and in Normotensive Patients with Chronic Renal Failure”, Nephron, 85:2 (2000), 114–119 | DOI
[18] X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J. C. Sanchez, M. Müller, “pROC: an open-source package for R and S+ to analyze and compare ROC curves”, BMC Bioinformatics, 12:1 (2011), 1–8 | DOI
[19] PubMed Database, (accessed 09.12.2020) https://pubmed.ncbi.nlm.nih.gov/
[20] S. S. Sawilowsky, “New effect size rules of thumb”, Journal of Modern Applied Statistical Methods, 8:2 (2009), 597–599 | DOI | MR
[21] D. Fuchs, P. P. Dupon, L. A. Schaap, R. Draijer, “The association between diabetes and dermal microvascular dysfunction non-invasively assessed by laser Doppler with local thermal hyperemia: a systematic review with meta-analysis”, Cardiovascular Diabetology, 16:11 (2017), 1–12 | DOI