Skin lesion classification using deep learning methods
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 180-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose an approach to solving the problem of recognizing skin lesions, namely melanoma, based on the analysis of dermoscopic images using deep learning methods. For this purpose, the architecture of a deep convolutional neural network was developed, which was applied to the processing of dermoscopic images of various skin lesions contained in the HAM10000 data set. The data under study were preprocessed to eliminate noise, contamination, and change the size and format of images. In addition, since the disease classes are unbalanced, a number of transformations were performed to balance them. The data obtained in this way were divided into two classes: Melanoma and Benign. Computer experiments using the built deep neural network based on the data obtained in this way have shown that the proposed approach provides 94 % accuracy on the test sample, which exceeds similar results obtained by other algorithms.
@article{MBB_2020_15_2_a0,
     author = {E.Yu.Shchetinin and L. A. Sevastyanov and A. V. Demidova and D. S. Kulyabov},
     title = {Skin lesion classification using deep learning methods},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {180--194},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a0/}
}
TY  - JOUR
AU  - E.Yu.Shchetinin
AU  - L. A. Sevastyanov
AU  - A. V. Demidova
AU  - D. S. Kulyabov
TI  - Skin lesion classification using deep learning methods
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - 180
EP  - 194
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a0/
LA  - ru
ID  - MBB_2020_15_2_a0
ER  - 
%0 Journal Article
%A E.Yu.Shchetinin
%A L. A. Sevastyanov
%A A. V. Demidova
%A D. S. Kulyabov
%T Skin lesion classification using deep learning methods
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P 180-194
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a0/
%G ru
%F MBB_2020_15_2_a0
E.Yu.Shchetinin; L. A. Sevastyanov; A. V. Demidova; D. S. Kulyabov. Skin lesion classification using deep learning methods. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 180-194. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a0/

[1] R. L. Siegel, K. D. Miller, A. Jemal, “Cancer statistics 2019”, CA: a cancer journal for clinicians, 69:1 (2019), 7–34 | DOI

[2] American Cancer Society: Cancer facts and figures, , 2018 (data obrascheniya: 09.07.2020) https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf

[3] M. B.B. S. Robin Marks, “An overview of skin cancers”, Cancer (Supplement), 75:2 (1995), 607–612 | 3.0.CO;2-8 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[4] H. W. Rogers, M. A. Weinstock, S. R. Feldman, B. M. Coldiron, “Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population. 2012”, JAMA Dermatology, 151:10 (2015), 1081–1086 | DOI

[5] S. A. Gandhi, J. Kampp, “Skin cancer epidemiology, detection, and management”, Medical Clinics, 99:6 (2015), 1323–1335 | DOI

[6] H. Kittler, H. Pehamberger, K. Wolff, M. Binder, “Diagnostic accuracy of dermoscopy”, Lancet Oncology, 3:3 (2002), 159–165 | DOI

[7] G. Salerni, T. Teran, S. Puig, J. Malvehy, I. Zalaudek, G. Argenziano, H. Kittler, “Meta-analysis of digital dermoscopy follow-up of melanocytic skin lesions: a study on behalf of the International Dermoscopy Society”, Journal of the European Academy of Dermatology and Venereology, 27:7 (2013), 805–814 | DOI

[8] The International Symposium on Biomedical Imaging (ISBI2016) (data obrascheniya: 09.07.2020) https://biomedicalimaging.org/2016/

[9] International Skin Imaging Collaboration: Melanoma Project Website, (data obrascheniya: 09.07.2020) https://isicarchive.com/

[10] S. Dreiseitl, L. Ohno-Machado, H. Kittler, S. Vinterbo, H. Billhardt, M. Binder, “A comparison of machine learning methods for the diagnosis of pigmented skin lesions”, Journal of Biomedical Informatics, 34:1 (2001), 28–36 | DOI

[11] A. Esteva, B. Kuprel, S. Thrun, Deep networks for early stage skin disease and skin cancer classification, Project Report, Stanford University, 2015

[12] B. Harangi, “Skin lesion classification with ensembles of deep convolutional neural networks”, Journal of biomedical informatics, 86 (2018), 25–32 | DOI

[13] Y. Yuan, M. Chao, Y. C. Lo, “Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance”, IEEE Transactions on Medical Imaging, 36:9 (2017), 1876–1886 | DOI

[14] E. Nasr-Esfahani, S. Samavi, N. Karimi, S. M.R. Soroushmehr, M. H. Jafari, K. Ward, K. Najarian, “Melanoma detection by analysis of clinical images using convolutional neural network”, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Orlando, FL, 2016), 1373–1376 | DOI

[15] I. Giotis, N. Molders, S. Land, M. Biehl, M. F. Jonkman, N. Petkov, “MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images”, Expert Systems with Applications, 42:19 (2015), 6578–6585 | DOI

[16] A. Mahbod, G. Schaefer, C. Wang, R. Ecker, I. Ellinge, “Skin lesion classification using hybrid deep neural networks”, ICASSP 2019 — 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, 1229–1233

[17] M. E. Celebi, Q. Wen, S. Hwang, “Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods”, Ski. Res. Technol., 19:1 (2013), e252–e258 | DOI

[18] A. Hekler, J. S. Utikal, A. H. Enk, C. Berking, J. Klode, D. Schadendorf, P. Jansen, C. Franklin, T. Holland-Letz, D. Krahl et al, “Pathologist-level classification of histopathological melanoma images with deep neural networks”, European Journal of Cancer, 115 (2019), 79–83 | DOI

[19] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, S. Thrun, “Dermatologist-level classification of skin cancer with deep neural networks”, Nature, 542:7639 (2017), 115–118 | DOI

[20] B. Harangi, “Skin lesion classification with ensembles of deep convolutional neural networks”, Journal of Biomedical Informatics, 86 (2018), 25–32 | DOI

[21] F. Xie, A. C. Bovik, “Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm”, Pattern Recognition, 46:3 (2013), 1012–1019 | DOI

[22] N. C. Codella, Q. B. Nguyen, S. Pankanti, D. A. Gutman, B. Helba, A. C. Halpern, “Deep learning ensembles for melanoma recognition in dermoscopy images”, IBM Journal of Research and Development, 61:4 (2017), 5–11

[23] L. Yu, H. Chen, Q. Dou, J. Qin, P. A. Heng, “Automated melanoma recognition in dermoscopy images via very deep residual networks”, IEEE Transactions on Medical Imaging, 36:4 (2016), 994–1004 | DOI

[24] L. Ballerini, R. B. Fisher, B. Aldridge, J. Rees, “A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions”, Color Medical Image Analysis, Springer, Netherlands, 2013, 63–86 | DOI

[25] Dermnet — Skin Disease Atlas, (data obrascheniya: 09.07.2020) https://www.linksmedicus.com/mainmenu/medical-images/dermnet-skin-disease-atlas/

[26] Biblioteka glubokogo obucheniya Keras, (data obrascheniya: 09.07.2020) https://www.keras.io/

[27] A. Dzhulli, S. Pal, Biblioteka Keras instrument glubokogo obucheniya, DMK Press, 2017, 294 pp.

[28] Baza dannykh ImageNet, (data obrascheniya: 09.07.2020) http://www.image-net.org/

[29] GitHub, (data obrascheniya: 09.07.2020) https://github.com/fastai/fastai/

[30] T. Fawcett, “An introduction to ROC analysis”, Pattern Recognition Letters, 27:8 (2006), 861–874 | DOI | MR

[31] Biblioteka mashinnogo obucheniya na yazyke programmirovaniya Piton, (data obrascheniya: 09.07.2020) https://www.sklearn.org/auto_examples/model_selection/plot_confusion_matrix.html

[32] L. A. Sevastyanov, E. Yu. Schetinin, “O metodakh povysheniya tochnosti mnogoklassovoi klassifikatsii na nesbalansirovannykh dannykh”, Informatika i ee primeneniya, 14:1 (2020), 67–74 | MR