Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_2_a0, author = {E.Yu.Shchetinin and L. A. Sevastyanov and A. V. Demidova and D. S. Kulyabov}, title = {Skin lesion classification using deep learning methods}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {180--194}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a0/} }
TY - JOUR AU - E.Yu.Shchetinin AU - L. A. Sevastyanov AU - A. V. Demidova AU - D. S. Kulyabov TI - Skin lesion classification using deep learning methods JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - 180 EP - 194 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a0/ LA - ru ID - MBB_2020_15_2_a0 ER -
%0 Journal Article %A E.Yu.Shchetinin %A L. A. Sevastyanov %A A. V. Demidova %A D. S. Kulyabov %T Skin lesion classification using deep learning methods %J Matematičeskaâ biologiâ i bioinformatika %D 2020 %P 180-194 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a0/ %G ru %F MBB_2020_15_2_a0
E.Yu.Shchetinin; L. A. Sevastyanov; A. V. Demidova; D. S. Kulyabov. Skin lesion classification using deep learning methods. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 2, pp. 180-194. http://geodesic.mathdoc.fr/item/MBB_2020_15_2_a0/
[1] R. L. Siegel, K. D. Miller, A. Jemal, “Cancer statistics 2019”, CA: a cancer journal for clinicians, 69:1 (2019), 7–34 | DOI
[2] American Cancer Society: Cancer facts and figures, , 2018 (data obrascheniya: 09.07.2020) https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf
[3] M. B.B. S. Robin Marks, “An overview of skin cancers”, Cancer (Supplement), 75:2 (1995), 607–612 | 3.0.CO;2-8 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[4] H. W. Rogers, M. A. Weinstock, S. R. Feldman, B. M. Coldiron, “Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population. 2012”, JAMA Dermatology, 151:10 (2015), 1081–1086 | DOI
[5] S. A. Gandhi, J. Kampp, “Skin cancer epidemiology, detection, and management”, Medical Clinics, 99:6 (2015), 1323–1335 | DOI
[6] H. Kittler, H. Pehamberger, K. Wolff, M. Binder, “Diagnostic accuracy of dermoscopy”, Lancet Oncology, 3:3 (2002), 159–165 | DOI
[7] G. Salerni, T. Teran, S. Puig, J. Malvehy, I. Zalaudek, G. Argenziano, H. Kittler, “Meta-analysis of digital dermoscopy follow-up of melanocytic skin lesions: a study on behalf of the International Dermoscopy Society”, Journal of the European Academy of Dermatology and Venereology, 27:7 (2013), 805–814 | DOI
[8] The International Symposium on Biomedical Imaging (ISBI2016) (data obrascheniya: 09.07.2020) https://biomedicalimaging.org/2016/
[9] International Skin Imaging Collaboration: Melanoma Project Website, (data obrascheniya: 09.07.2020) https://isicarchive.com/
[10] S. Dreiseitl, L. Ohno-Machado, H. Kittler, S. Vinterbo, H. Billhardt, M. Binder, “A comparison of machine learning methods for the diagnosis of pigmented skin lesions”, Journal of Biomedical Informatics, 34:1 (2001), 28–36 | DOI
[11] A. Esteva, B. Kuprel, S. Thrun, Deep networks for early stage skin disease and skin cancer classification, Project Report, Stanford University, 2015
[12] B. Harangi, “Skin lesion classification with ensembles of deep convolutional neural networks”, Journal of biomedical informatics, 86 (2018), 25–32 | DOI
[13] Y. Yuan, M. Chao, Y. C. Lo, “Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance”, IEEE Transactions on Medical Imaging, 36:9 (2017), 1876–1886 | DOI
[14] E. Nasr-Esfahani, S. Samavi, N. Karimi, S. M.R. Soroushmehr, M. H. Jafari, K. Ward, K. Najarian, “Melanoma detection by analysis of clinical images using convolutional neural network”, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Orlando, FL, 2016), 1373–1376 | DOI
[15] I. Giotis, N. Molders, S. Land, M. Biehl, M. F. Jonkman, N. Petkov, “MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images”, Expert Systems with Applications, 42:19 (2015), 6578–6585 | DOI
[16] A. Mahbod, G. Schaefer, C. Wang, R. Ecker, I. Ellinge, “Skin lesion classification using hybrid deep neural networks”, ICASSP 2019 — 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, 1229–1233
[17] M. E. Celebi, Q. Wen, S. Hwang, “Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods”, Ski. Res. Technol., 19:1 (2013), e252–e258 | DOI
[18] A. Hekler, J. S. Utikal, A. H. Enk, C. Berking, J. Klode, D. Schadendorf, P. Jansen, C. Franklin, T. Holland-Letz, D. Krahl et al, “Pathologist-level classification of histopathological melanoma images with deep neural networks”, European Journal of Cancer, 115 (2019), 79–83 | DOI
[19] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, S. Thrun, “Dermatologist-level classification of skin cancer with deep neural networks”, Nature, 542:7639 (2017), 115–118 | DOI
[20] B. Harangi, “Skin lesion classification with ensembles of deep convolutional neural networks”, Journal of Biomedical Informatics, 86 (2018), 25–32 | DOI
[21] F. Xie, A. C. Bovik, “Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm”, Pattern Recognition, 46:3 (2013), 1012–1019 | DOI
[22] N. C. Codella, Q. B. Nguyen, S. Pankanti, D. A. Gutman, B. Helba, A. C. Halpern, “Deep learning ensembles for melanoma recognition in dermoscopy images”, IBM Journal of Research and Development, 61:4 (2017), 5–11
[23] L. Yu, H. Chen, Q. Dou, J. Qin, P. A. Heng, “Automated melanoma recognition in dermoscopy images via very deep residual networks”, IEEE Transactions on Medical Imaging, 36:4 (2016), 994–1004 | DOI
[24] L. Ballerini, R. B. Fisher, B. Aldridge, J. Rees, “A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions”, Color Medical Image Analysis, Springer, Netherlands, 2013, 63–86 | DOI
[25] Dermnet — Skin Disease Atlas, (data obrascheniya: 09.07.2020) https://www.linksmedicus.com/mainmenu/medical-images/dermnet-skin-disease-atlas/
[26] Biblioteka glubokogo obucheniya Keras, (data obrascheniya: 09.07.2020) https://www.keras.io/
[27] A. Dzhulli, S. Pal, Biblioteka Keras instrument glubokogo obucheniya, DMK Press, 2017, 294 pp.
[28] Baza dannykh ImageNet, (data obrascheniya: 09.07.2020) http://www.image-net.org/
[29] GitHub, (data obrascheniya: 09.07.2020) https://github.com/fastai/fastai/
[30] T. Fawcett, “An introduction to ROC analysis”, Pattern Recognition Letters, 27:8 (2006), 861–874 | DOI | MR
[31] Biblioteka mashinnogo obucheniya na yazyke programmirovaniya Piton, (data obrascheniya: 09.07.2020) https://www.sklearn.org/auto_examples/model_selection/plot_confusion_matrix.html
[32] L. A. Sevastyanov, E. Yu. Schetinin, “O metodakh povysheniya tochnosti mnogoklassovoi klassifikatsii na nesbalansirovannykh dannykh”, Informatika i ee primeneniya, 14:1 (2020), 67–74 | MR