Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_1_a4, author = {V. Yu. Lunin and N. L. Lunina and T. E. Petrova}, title = {Mask-based approach in phasing and restoring of single-particle diffraction data}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {57--72}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a4/} }
TY - JOUR AU - V. Yu. Lunin AU - N. L. Lunina AU - T. E. Petrova TI - Mask-based approach in phasing and restoring of single-particle diffraction data JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - 57 EP - 72 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a4/ LA - en ID - MBB_2020_15_1_a4 ER -
%0 Journal Article %A V. Yu. Lunin %A N. L. Lunina %A T. E. Petrova %T Mask-based approach in phasing and restoring of single-particle diffraction data %J Matematičeskaâ biologiâ i bioinformatika %D 2020 %P 57-72 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a4/ %G en %F MBB_2020_15_1_a4
V. Yu. Lunin; N. L. Lunina; T. E. Petrova. Mask-based approach in phasing and restoring of single-particle diffraction data. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 1, pp. 57-72. http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a4/
[1] P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve et al, “PHENIX: a comprehensive Python-based system for macromolecular structure solution”, Acta Crystallographica D, 66 (2010), 213–221 | DOI
[2] M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G.W. Leslie, A. McCoy et al, “Overview of the CCP4 suite and current developments”, Acta Crystallographica D, 67 (2011), 235–242 | DOI
[3] G. M. Sheldrick, “A short history of SHELX”, Acta Crystallographica A, 64 (2008), 112–122 | DOI | Zbl
[4] G. Bricogne, C. Vonrhein, C. Flensburg, M. Schiltz, W. Paciorek, “Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0”, Acta Crystallographica D, 59 (2003), 2023–2030 | DOI
[5] E. Blanc, P. Roversi, C. Vonrhein, C. Flensburg, S. M. Lea, G. Bricogne, “Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT”, Acta Crystallographica D, 60 (2004), 2210–2221 | DOI
[6] W. Minor, M. Cymborowski, Z. Otwinowski, M. Chruszcz, “HKL-3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes”, Acta Crystallographica D, 62 (2006), 859–866 | DOI
[7] J. C.H. Spence, “XFELs for structure and dynamics in biology”, IUCrJ, 4 (2017), 322–339 | DOI
[8] J. Standfuss, J. Spence, “Serial crystallography at synchrotrons and X-ray lasers”, IUCrJ, 4 (2017), 100–101 | DOI
[9] A. Aquila, A. Barty, C. Bostedt, S. Boutet, G. Carini, D. dePonte, P. Drell, S. Doniach, K. H. Downing, T. Earnest et al, “The linac coherent light source single particle imaging road map”, Structural Dynamics, 2 (2015) | DOI
[10] K. Ayyer, G. Geloni, V. Kocharyan, E. Saldin, S. Serkez, O. Yefanov, I. Zagorodnov, “Perspectives for imaging single protein molecules with the present design of the European XFEL”, Structural Dynamics, 2 (2015) | DOI | Zbl
[11] B. J. Daurer, K. Okamoto, J. Bielecki, F. R.N. C. Maia, K. Muhlig, M. M. Seibert, M. F. Hantke, C. Nettelblad, W. H. Benner, M. Svenda et al, “Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses”, IUCrJ, 4 (2017), 251–262 | DOI
[12] V. Y. Lunin, N. L. Lunina, T. E. Petrova, “The biological crystallography without crystals”, Mathematical Biology and Bioinformatics, 12:1 (2017), 55–72 | DOI
[13] V. Y. Lunin, “Mask-based approach to restoring and phasing single-particle diffraction data”, 32nd European Crystallographic Meeting, Abstract Booklet (Vienna, Austria, August 18-23), 2019, 138
[14] V. Y. Lunin, N. L. Lunina, T. E. Petrova, “Single particle study by X-ray diffraction: Crystallographic approach”, Mathematical Biology and Bioinformatics, 14:2 (2019), 500–516 | DOI
[15] L. Urzhumtseva, B. Klaholz, A. Urzhumtsev, “On effective and optical resolutions of diffraction data sets”, Acta Crystallographica D, 69 (2013), 1921–1934 | DOI
[16] A. Kucukelbir, F. J. Sigworth, H. D. Tagare, “Quantifying the local resolution of cryo-EM density maps”, Nature Methods, 11 (2014), 63–65 | DOI
[17] P. V. Afonine, B. P. Klaholz, N. W. Moriarty, B. K. Poon, O. V. Sobolev, T. C. Terwilliger, P. D. Adams, A. Urzhumtsev, Acta Crystallographica D, 74 (2018), 814–840 | DOI
[18] E. Meijering, “A chronology of interpolation: from ancient astronomy to modern signal and image processing”, Proceedings of the IEEE, 90 (2002), 319–342 | DOI
[19] V. A. Kotel'nikov, “On the transmission capacity of 'ether' and wire in electric communications”, Physics-Uspekhi, 49:7 (2006), 736–744 | DOI
[20] D. Sayre, “Some implications of a theorem due to Shannon”, Acta Crystallographica, 5 (1952), 843 | DOI
[21] G. Bricogne, “Geometric sources of redundancy in intensity data and their use for phase determination”, Acta Crystallographica A, 30 (1974), 395–405 | DOI
[22] G. Bricogne, “Methods and programs for direct-space exploitation of geometric redundancies”, Acta Crystallographica A, 32 (1976), 832–847 | DOI
[23] V. Y. Lunin, N. L. Lunina, “Repairing of the diffraction pattern in the X-ray free electron laser study of biological particles”, Advanced Mathematical Models Applications, 3 (2018), 117–127
[24] V. Y. Lunin, “Use of the fast differentiation algorithm for phase refinement in protein crystallography”, Acta Crystallographica A, 41 (1985), 551–556 | DOI
[25] A. D. Podjarny, B. Rees, A. G. Urzhumtsev, “Density modification in X-ray crystallography”, Crystallographic Methods and Protocols, Methods in Molecular Biology, 56, eds. Jones C., Milloy B., Sanderson M. R., Humana Press, Totowa, New Jersey, 1996, 205–226 | DOI
[26] K. Y.J. Zhang, K. D. Cowtan, P. Main, “Phase improvement by iterative density modification”, International Tables for Crystallography, v. F, eds. E. Arnold, D. M. Himmel, M. G. Rossmann, John Wiley and Sons, Chichester, 2012, 385–400 | DOI
[27] B. C. Wang, “Resolution of phase ambiguity in macromolecular crystallography”, Methods in Enzymology, 115 (1985), 90–111 | DOI
[28] J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform”, Optics Letters, 3:1 (1978), 27–29 | DOI
[29] S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval”, Rev. Sci. Instrum., 78 (2007), 011301 | DOI
[30] R. Millane, V. L. Lo, “Iterative projection algorithms in protein crystallography. I. Theory”, Acta Crystallographica A, 69 (2013), 517–527 | DOI | MR | Zbl
[31] J. P. Abrahams, “Bias reduction in phase refinement by modified interference functions: introducing the $\gamma$-correction”, Acta Crystallographica D, 53 (1997), 371–376 | DOI
[32] G. Oslányi, A. Sütő, “Ab initio structure solution by charge flipping”, Acta Crystallographica A, 60 (2004), 134–141 | DOI
[33] F. R. N. C. Maia, T. Ekeberg, D. Spoel, J. Hajdu, “Hawk: the image reconstruction package for coherent X-ray diffractive imaging”, J. Applied Crystallography, 43 (2010), 1535–1539 | DOI
[34] A. G. Urzhumtsev, The use of local averaging in analysis of macromolecule images at electron density distribution maps, Preprint, Pushchino, 1985 (in Russ.)
[35] A. G. Urzhumtsev, V. Y. Lunin, T. B. Luzyanina, “Bounding a Molecule in a Noisy Synthesis”, Acta Crystallographica A, 45 (1989), 34–39 | DOI
[36] S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, J. H.C. Spence, “X-ray image reconstruction from a diffraction pattern alone”, Phis. Rev. B, 68 (2003), 140101(R) | DOI
[37] V. Y. Lunin, N. L. Lunina, T. E. Petrova, M. W. Baumstark, A. G. Urzhumtsev, “Mask-based approach to phasing of single-particle diffraction data”, Acta Crystallographica D, 72 (2016), 147–157 | DOI
[38] V. Y. Lunin, N. L. Lunina, T. E. Petrova, “The use of connected masks for reconstructing the single particle image from X-ray diffraction data”, Mathematical Biology and Bioinformatics, 10, Suppl. (2014), t1–t19 | DOI
[39] B. W. Matthews, “Solvent Content of Protein Crystals”, Journal of Molecular Biology, 33 (1968), 491–497 | DOI
[40] C. X. Weichenberger, P. V. Afonine, K. Kantardjieff, B. Rupp, Acta Crystallographica D, 71 (2015), 1023–1038 | DOI
[41] V. Y. Lunin, N. L. Lunina, T. E. Petrova, M. W. Baumstark, A. G. Urzhumtsev, “Mask-based approach to phasing of single-particle diffraction data. II. Likelihood-based selection criteria”, Acta Crystallographica D, 75 (2019), 79–89 | DOI
[42] N. L. Lunina, T. E. Petrova, A. G. Urzhumtsev, V. Y. Lunin, “The Use of Connected Masks for Reconstructing the Single Particle Image from X-Ray Diffraction Data. III. Maximum-Likelihood Based Strategies to Select Solution of the Phase Problem”, Mathematical Biology and Bioinformatics, 13, Supl. (2018), t70–t83 | DOI
[43] V. Y. Lunin, M. M. Woolfson, “Mean Phase Error and the Map Correlation Coefficient”, Acta Crystallographica D, 49 (1993), 530–533 | DOI
[44] M. Broser, A. Gabdulkhakov, J. Kern, A. Guskov, F. Müh, W. Saenger, A. Zouni, “Crystal structure of monomeric Photosystem II from Thermosynechococcus elongatus at 3.6 Å resolution”, J. Biol. Chem., 285 (2010), 26255–26262 | DOI
[45] P. Jordan, P. Fromme, H. T. Witt, O. Klukas, W. Saenger, N. Krauß, “Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution”, Nature, 411 (2001), 909–917 | DOI
[46] N. L. Lunina, T. E. Petrova, A. G. Urzhumtsev, V. Y. Lunin, “The use of connected masks for reconstructing the single particle image from X-ray diffraction data. II. The dependence of the accuracy of the solution on the sampling step of experimental data”, Mathematical Biology and Bioinformatics, 10, Suppl. (2015), t56–t72 | DOI
[47] M. Van Heel, M. Schatz, “Fourier shell correlation threshold criteria”, J. Struct. Biol., 151 (2005), 250–262 | DOI
[48] M. Van Heel, M. Schatz, Reassessing the Revolution's Resolutions, bioRxiv, No 224402, 2017 | DOI