Mask-based approach in phasing and restoring of single-particle diffraction data
Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 1, pp. 57-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The development of experimental techniques, in particular the emergence of the X-ray free-electron lasers, allows one to register the scattering from an isolated particle and, thereby, opens a door to the study of a fine three-dimensional structure of non-crystalline biological objects by X-ray diffraction methods. The possibility to measure non-Bragg reflections makes experimental data mutually dependent and essentially simplifies the structure solution. The sampling of experimental scattering data to a sufficiently fine grid makes the structure determination equivalent to phasing of structure factor magnitudes for a 'virtual' crystal with extremely large solvent content. This makes density modification phasing methods especially powerful supposing the object envelope is known. At the same time, such methods may be sensitive to the accuracy of the predefined envelope and completeness of experimental data and may suffer from non-uniqueness of the solution of the phase problem. The mask-based approach is a preliminary phasing method that performs random search for connected object envelopes possessing of the structure factor magnitudes close to the values observed in X-ray experiment. The alignment and averaging of the phase sets corresponding to selected putative envelopes produce an approximate solution of the phase problem. Beside the estimation of unknown phase values this approach allows one to estimate the values of structure factor magnitudes lost in the experiment, e.g. those corresponding to beam-stop shade zone or to oversaturated reflections.
@article{MBB_2020_15_1_a4,
     author = {V. Yu. Lunin and N. L. Lunina and T. E. Petrova},
     title = {Mask-based approach in phasing and restoring of single-particle diffraction data},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {57--72},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a4/}
}
TY  - JOUR
AU  - V. Yu. Lunin
AU  - N. L. Lunina
AU  - T. E. Petrova
TI  - Mask-based approach in phasing and restoring of single-particle diffraction data
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2020
SP  - 57
EP  - 72
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a4/
LA  - en
ID  - MBB_2020_15_1_a4
ER  - 
%0 Journal Article
%A V. Yu. Lunin
%A N. L. Lunina
%A T. E. Petrova
%T Mask-based approach in phasing and restoring of single-particle diffraction data
%J Matematičeskaâ biologiâ i bioinformatika
%D 2020
%P 57-72
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a4/
%G en
%F MBB_2020_15_1_a4
V. Yu. Lunin; N. L. Lunina; T. E. Petrova. Mask-based approach in phasing and restoring of single-particle diffraction data. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 1, pp. 57-72. http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a4/

[1] P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve et al, “PHENIX: a comprehensive Python-based system for macromolecular structure solution”, Acta Crystallographica D, 66 (2010), 213–221 | DOI

[2] M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G.W. Leslie, A. McCoy et al, “Overview of the CCP4 suite and current developments”, Acta Crystallographica D, 67 (2011), 235–242 | DOI

[3] G. M. Sheldrick, “A short history of SHELX”, Acta Crystallographica A, 64 (2008), 112–122 | DOI | Zbl

[4] G. Bricogne, C. Vonrhein, C. Flensburg, M. Schiltz, W. Paciorek, “Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0”, Acta Crystallographica D, 59 (2003), 2023–2030 | DOI

[5] E. Blanc, P. Roversi, C. Vonrhein, C. Flensburg, S. M. Lea, G. Bricogne, “Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT”, Acta Crystallographica D, 60 (2004), 2210–2221 | DOI

[6] W. Minor, M. Cymborowski, Z. Otwinowski, M. Chruszcz, “HKL-3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes”, Acta Crystallographica D, 62 (2006), 859–866 | DOI

[7] J. C.H. Spence, “XFELs for structure and dynamics in biology”, IUCrJ, 4 (2017), 322–339 | DOI

[8] J. Standfuss, J. Spence, “Serial crystallography at synchrotrons and X-ray lasers”, IUCrJ, 4 (2017), 100–101 | DOI

[9] A. Aquila, A. Barty, C. Bostedt, S. Boutet, G. Carini, D. dePonte, P. Drell, S. Doniach, K. H. Downing, T. Earnest et al, “The linac coherent light source single particle imaging road map”, Structural Dynamics, 2 (2015) | DOI

[10] K. Ayyer, G. Geloni, V. Kocharyan, E. Saldin, S. Serkez, O. Yefanov, I. Zagorodnov, “Perspectives for imaging single protein molecules with the present design of the European XFEL”, Structural Dynamics, 2 (2015) | DOI | Zbl

[11] B. J. Daurer, K. Okamoto, J. Bielecki, F. R.N. C. Maia, K. Muhlig, M. M. Seibert, M. F. Hantke, C. Nettelblad, W. H. Benner, M. Svenda et al, “Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses”, IUCrJ, 4 (2017), 251–262 | DOI

[12] V. Y. Lunin, N. L. Lunina, T. E. Petrova, “The biological crystallography without crystals”, Mathematical Biology and Bioinformatics, 12:1 (2017), 55–72 | DOI

[13] V. Y. Lunin, “Mask-based approach to restoring and phasing single-particle diffraction data”, 32nd European Crystallographic Meeting, Abstract Booklet (Vienna, Austria, August 18-23), 2019, 138

[14] V. Y. Lunin, N. L. Lunina, T. E. Petrova, “Single particle study by X-ray diffraction: Crystallographic approach”, Mathematical Biology and Bioinformatics, 14:2 (2019), 500–516 | DOI

[15] L. Urzhumtseva, B. Klaholz, A. Urzhumtsev, “On effective and optical resolutions of diffraction data sets”, Acta Crystallographica D, 69 (2013), 1921–1934 | DOI

[16] A. Kucukelbir, F. J. Sigworth, H. D. Tagare, “Quantifying the local resolution of cryo-EM density maps”, Nature Methods, 11 (2014), 63–65 | DOI

[17] P. V. Afonine, B. P. Klaholz, N. W. Moriarty, B. K. Poon, O. V. Sobolev, T. C. Terwilliger, P. D. Adams, A. Urzhumtsev, Acta Crystallographica D, 74 (2018), 814–840 | DOI

[18] E. Meijering, “A chronology of interpolation: from ancient astronomy to modern signal and image processing”, Proceedings of the IEEE, 90 (2002), 319–342 | DOI

[19] V. A. Kotel'nikov, “On the transmission capacity of 'ether' and wire in electric communications”, Physics-Uspekhi, 49:7 (2006), 736–744 | DOI

[20] D. Sayre, “Some implications of a theorem due to Shannon”, Acta Crystallographica, 5 (1952), 843 | DOI

[21] G. Bricogne, “Geometric sources of redundancy in intensity data and their use for phase determination”, Acta Crystallographica A, 30 (1974), 395–405 | DOI

[22] G. Bricogne, “Methods and programs for direct-space exploitation of geometric redundancies”, Acta Crystallographica A, 32 (1976), 832–847 | DOI

[23] V. Y. Lunin, N. L. Lunina, “Repairing of the diffraction pattern in the X-ray free electron laser study of biological particles”, Advanced Mathematical Models Applications, 3 (2018), 117–127

[24] V. Y. Lunin, “Use of the fast differentiation algorithm for phase refinement in protein crystallography”, Acta Crystallographica A, 41 (1985), 551–556 | DOI

[25] A. D. Podjarny, B. Rees, A. G. Urzhumtsev, “Density modification in X-ray crystallography”, Crystallographic Methods and Protocols, Methods in Molecular Biology, 56, eds. Jones C., Milloy B., Sanderson M. R., Humana Press, Totowa, New Jersey, 1996, 205–226 | DOI

[26] K. Y.J. Zhang, K. D. Cowtan, P. Main, “Phase improvement by iterative density modification”, International Tables for Crystallography, v. F, eds. E. Arnold, D. M. Himmel, M. G. Rossmann, John Wiley and Sons, Chichester, 2012, 385–400 | DOI

[27] B. C. Wang, “Resolution of phase ambiguity in macromolecular crystallography”, Methods in Enzymology, 115 (1985), 90–111 | DOI

[28] J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform”, Optics Letters, 3:1 (1978), 27–29 | DOI

[29] S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval”, Rev. Sci. Instrum., 78 (2007), 011301 | DOI

[30] R. Millane, V. L. Lo, “Iterative projection algorithms in protein crystallography. I. Theory”, Acta Crystallographica A, 69 (2013), 517–527 | DOI | MR | Zbl

[31] J. P. Abrahams, “Bias reduction in phase refinement by modified interference functions: introducing the $\gamma$-correction”, Acta Crystallographica D, 53 (1997), 371–376 | DOI

[32] G. Oslányi, A. Sütő, “Ab initio structure solution by charge flipping”, Acta Crystallographica A, 60 (2004), 134–141 | DOI

[33] F. R. N. C. Maia, T. Ekeberg, D. Spoel, J. Hajdu, “Hawk: the image reconstruction package for coherent X-ray diffractive imaging”, J. Applied Crystallography, 43 (2010), 1535–1539 | DOI

[34] A. G. Urzhumtsev, The use of local averaging in analysis of macromolecule images at electron density distribution maps, Preprint, Pushchino, 1985 (in Russ.)

[35] A. G. Urzhumtsev, V. Y. Lunin, T. B. Luzyanina, “Bounding a Molecule in a Noisy Synthesis”, Acta Crystallographica A, 45 (1989), 34–39 | DOI

[36] S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, J. H.C. Spence, “X-ray image reconstruction from a diffraction pattern alone”, Phis. Rev. B, 68 (2003), 140101(R) | DOI

[37] V. Y. Lunin, N. L. Lunina, T. E. Petrova, M. W. Baumstark, A. G. Urzhumtsev, “Mask-based approach to phasing of single-particle diffraction data”, Acta Crystallographica D, 72 (2016), 147–157 | DOI

[38] V. Y. Lunin, N. L. Lunina, T. E. Petrova, “The use of connected masks for reconstructing the single particle image from X-ray diffraction data”, Mathematical Biology and Bioinformatics, 10, Suppl. (2014), t1–t19 | DOI

[39] B. W. Matthews, “Solvent Content of Protein Crystals”, Journal of Molecular Biology, 33 (1968), 491–497 | DOI

[40] C. X. Weichenberger, P. V. Afonine, K. Kantardjieff, B. Rupp, Acta Crystallographica D, 71 (2015), 1023–1038 | DOI

[41] V. Y. Lunin, N. L. Lunina, T. E. Petrova, M. W. Baumstark, A. G. Urzhumtsev, “Mask-based approach to phasing of single-particle diffraction data. II. Likelihood-based selection criteria”, Acta Crystallographica D, 75 (2019), 79–89 | DOI

[42] N. L. Lunina, T. E. Petrova, A. G. Urzhumtsev, V. Y. Lunin, “The Use of Connected Masks for Reconstructing the Single Particle Image from X-Ray Diffraction Data. III. Maximum-Likelihood Based Strategies to Select Solution of the Phase Problem”, Mathematical Biology and Bioinformatics, 13, Supl. (2018), t70–t83 | DOI

[43] V. Y. Lunin, M. M. Woolfson, “Mean Phase Error and the Map Correlation Coefficient”, Acta Crystallographica D, 49 (1993), 530–533 | DOI

[44] M. Broser, A. Gabdulkhakov, J. Kern, A. Guskov, F. Müh, W. Saenger, A. Zouni, “Crystal structure of monomeric Photosystem II from Thermosynechococcus elongatus at 3.6 Å resolution”, J. Biol. Chem., 285 (2010), 26255–26262 | DOI

[45] P. Jordan, P. Fromme, H. T. Witt, O. Klukas, W. Saenger, N. Krauß, “Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution”, Nature, 411 (2001), 909–917 | DOI

[46] N. L. Lunina, T. E. Petrova, A. G. Urzhumtsev, V. Y. Lunin, “The use of connected masks for reconstructing the single particle image from X-ray diffraction data. II. The dependence of the accuracy of the solution on the sampling step of experimental data”, Mathematical Biology and Bioinformatics, 10, Suppl. (2015), t56–t72 | DOI

[47] M. Van Heel, M. Schatz, “Fourier shell correlation threshold criteria”, J. Struct. Biol., 151 (2005), 250–262 | DOI

[48] M. Van Heel, M. Schatz, Reassessing the Revolution's Resolutions, bioRxiv, No 224402, 2017 | DOI