Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_1_a3, author = {I. R. Akberdin and A. Yu. Vertyshev and S. S. Pintus and D. V. Popov and F. A. Kolpakov}, title = {A mathematical model linking {Ca}$^{2+}$-dependent signaling pathway and gene expression regulation in}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {20--39}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a3/} }
TY - JOUR AU - I. R. Akberdin AU - A. Yu. Vertyshev AU - S. S. Pintus AU - D. V. Popov AU - F. A. Kolpakov TI - A mathematical model linking Ca$^{2+}$-dependent signaling pathway and gene expression regulation in JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - 20 EP - 39 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a3/ LA - ru ID - MBB_2020_15_1_a3 ER -
%0 Journal Article %A I. R. Akberdin %A A. Yu. Vertyshev %A S. S. Pintus %A D. V. Popov %A F. A. Kolpakov %T A mathematical model linking Ca$^{2+}$-dependent signaling pathway and gene expression regulation in %J Matematičeskaâ biologiâ i bioinformatika %D 2020 %P 20-39 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a3/ %G ru %F MBB_2020_15_1_a3
I. R. Akberdin; A. Yu. Vertyshev; S. S. Pintus; D. V. Popov; F. A. Kolpakov. A mathematical model linking Ca$^{2+}$-dependent signaling pathway and gene expression regulation in. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 1, pp. 20-39. http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a3/
[1] B. K. Pedersen, M. A. Febbraio, “Muscles, exercise and obesity: skeletal muscle as a secretory organ”, Nature Reviews Endocrinology, 8:8 (2012), 457–465 | DOI
[2] J. A. Hawley, M. Hargreaves, M. J. Joyne, J. R. Zierath, “Integrative biology of exercise”, Cell, 159:4 (2014), 738–749 | DOI
[3] N. Koulmann, A. X. Bigard, “Interaction between signaling pathways involved in skeletal muscle responses to endurance exercise”, Pflügers Archiv, 452:2 (2006), 125 | DOI
[4] O. Neubauer, S. Sabapathy, K. J. Ashton, B. Desbrow, J. M. Peake, R. Lazarus, B. Wessner, D. Cameron-Smith, K. H. Wagne, L. J. Haseler, A. C. Bulmer, “Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: from inflammation to adaptive remodeling”, Journal of Applied Physiology, 116:3 (2013), 274–287 | DOI
[5] K. Vissing, P. Schjerling, “Simplified data access on human skeletal muscle transcriptome responses to differentiated exercise”, Scientific data, 1 (2014), 140041 | DOI
[6] D. V. Popov, P. A. Makhnovskii, N. S. Kurochkina, E. A. Lysenko, T. F. Vepkhvadze, O. L. Vinogradova, “Intensity-dependent gene expression after aerobic exercise in endurance-trained skeletal muscle”, Biology of sport, 35:3 (2018), 277 | DOI
[7] J. M. Dickinson, A. C. D'Lugos, M. A. Naymik, A. L. Siniard, A. J. Wolfe, D. R. Curtis, M. J. Huentelman, C. C. Carroll, “Transcriptome response of human skeletal muscle to divergent exercise stimuli”, Journal of Applied Physiology, 124:6 (2018), 1529–1540 | DOI
[8] D. V. Popov, P. A. Makhnovskii, E. I. Shagimardanova, G. R. Gazizova, E. A. Lysenko, O. A. Gusev, O. L. Vinogradova, “Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle”, American Journal of Physiology-Endocrinology and Metabolism, 316:4 (2019), E605–E614 | DOI
[9] Y. Li, R. K. Dash, J. Kim, G. M. Saidel, M. E. Cabrera, “Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies”, American Journal of Physiology-Cell Physiology, 296:1 (2009), 25–46
[10] I. R. Akberdin, F. V. Kazantsev, T. V. Ermak, V. S. Timonov, T. M. Khlebodarova, V. A. Likhoshvai, “In Silico Cell: Challenges and Perspectives”, Mathematical Biology and Bioinformatics, 8:1 (2013), 295–315 | DOI
[11] I. N. Kiselev, I. R. Akberdin, A. Y. Vertyshev, D. V. Popov, F. A. Kolpakov, “A Modular Visual Model of Energy Metabolism in Human Skeletal Muscle”, Mathematical Biology and Bioinformatics, 14:2 (2019), 373–392 | DOI
[12] F. Kolpakov, I. Akberdin, T. Kashapov, I. Kiselev, S. Kolmykov, Y. Kondrakhin, E. Kutumova, N. Mandrik, S. Pintus, A. Ryabova, R. Sharipov, I. Yevshin, A. Kel, “BioUML: an integrated environment for systems biology and collaborative analysis of biomedical data”, Nucleic Acids Research, 47.:W1 (2019), W225–W233 | DOI
[13] R. C. Scarpulla, “Transcriptional paradigms in mammalian mitochondrial biogenesis and function”, Physiological Reviews, 88:2 (2008), 611–638 | DOI
[14] J. Olesen, K. Kiilerich, H. Pilegaard, “PGC-1$\alpha$-mediated adaptations in skeletal muscle”, Pflügers Archiv-European Journal of Physiology, 460:1 (2010), 153–162 | DOI
[15] M. A. Pearen, N. A. Eriksson, R. L. Fitzsimmons, J. M. Goode, N. Martel, S. Andrikopoulos, G. E. Muscat, “The nuclear receptor, Nor-1, markedly increases type II oxidative muscle fibers and resistance to fatigue”, Molecular Endocrinology, 26:3 (2012), 372–384 | DOI
[16] M. A. Pearen, J. M. Goode, R. L. Fitzsimmons, N. A. Eriksson, G. P. Thomas, G. J. Cowin, S. C.M. Wang, Z. K. Tuong, G. E. Muscat, “Transgenic muscle-specific Nor-1 expression regulates multiple pathways that effect adiposity, metabolism, and endurance”, Molecular Endocrinology, 27:11 (2013), 1897–1917 | DOI
[17] T. Yoshioka, K. Inagaki, T. Noguchi, M. Sakai, W. Ogawa, T. Hosooka, H. Iguchi, E. Watanabe, Y. Matsuki, R. Hiramatsu, M. Kasuga, “Identification and characterization of an alternative promoter of the human PGC-1$\alpha$ gene”, Biochemical and Biophysical Research Communications, 381:4 (2009), 537–543 | DOI
[18] N. E. Bruno, K. A. Kelly, R. Hawkins, M. Bramah-Lawani, A. L. Amelio, J. C. Nwachukwu, K. W. Nettles, M. D. Conkright, “Creb coactivators direct anabolic responses and enhance performance of skeletal muscle”, The EMBO journal, 33:9 (2014), 1027–1043 | DOI
[19] J. M. Goode, M. A. Pearen, Z. K. Tuong, S. C.M. Wang, T. G. Oh, E. X. Shao, G. E. Muscat, “The nuclear receptor, Nor-1, induces the physiological responses associated with exercise”, Molecular Endocrinology, 30:6 (2016), 660–676 | DOI
[20] R. Berdeaux, C. Hutchins, “Anabolic and pro-metabolic functions of CREB-CRTC in skeletal muscle: advantages and obstacles for type 2 diabetes and cancer cachexia”, Frontiers in Endocrinology, 10 (2019), 535 | DOI
[21] J. Cui, J. A. Kaandorp, “Simulating complex calcium-calcineurin signaling network”, International Conference on Computational Science, Springer, Berlin–Heidelberg, 2008, 110–119
[22] J. J. Saucerman, D. M. Bers, “Calmodulin mediates differential sensitivity of CaMKII and calcineurin to local Ca$^{2+}$ in cardiac myocytes”, Biophysical Journal, 95:10 (2008), 4597–4612 | DOI
[23] W. Eilers, W. Gevers, D. Van Overbeek, A. De Haan, R. T. Jaspers, P. A. Hilbers, N. Van Riel, M. Flück, “Muscle-type specific autophosphorylation of CaMKII isoforms after paced contractions”, BioMed Research International, 2014, 943806 | DOI
[24] M. Murgia, L. Toniolo, N. Nagaraj, S. Ciciliot, V. Vindigni, S. Schiaffino, C. Reggiani, M. Mann, “Single muscle fiber proteomics reveals fiber-type-specific features of human muscle aging”, Cell Reports, 19:11 (2017), 2396–2409 | DOI
[25] L. D. Yates, M. L. Greaser, H. E. Huxley, “Quantitative determination of myosin and actin in rabbit skeletal muscle”, Journal of Molecular Biology, 168:1 (1983), 123–141 | DOI
[26] D. L. Hasten, G. S. Morris, S. Ramanadham, K. E. Yarasheski, “Isolation of human skeletal muscle myosin heavy chain and actin for measurement of fractional synthesis rates”, American Journal of Physiology-Endocrinology and Metabolism, 275:6 (1998), E1092–E1099 | DOI
[27] E. Borina, M. A. Pellegrino, G. D'Antona, R. Bottinelli, “Myosin and actin content of human skeletal muscle fibers following 35 days bed rest”, Scandinavian Journal of Medicine Science in Sports, 20:1 (2010), 65–73 | DOI
[28] C. C. Carroll, J. A. Carrithers, T. A. Trappe, “Contractile protein concentrations in human single muscle fibers”, Journal of Muscle Research and Cell Motility, 25:1 (2004), 55–59 | DOI | MR
[29] M. Wilhelm, J. Schlegl, H. Hahne, A. M. Gholami, M. Lieberenz, M. M. Savitski, E. Ziegler, L. Butzmann, S. Gessulat, H. Marx, T. Mathieson, “Mass-spectrometry-based draft of the human proteome”, Nature, 509:7502 (2014), 582 | DOI
[30] F. Edfors, F. Danielsson, B. M. Hallström, L. Käll, E. Lundberg, F. Pontén, B. Forsström, M. Uhlén, “Gene-specific correlation of RNA and protein levels in human cells and tissues”, Molecular systems biology, 12:10 (2016) | DOI
[31] N. Fortelny, C. M. Overall, P. Pavlidis, G. V.C. Freue, Can we predict protein from mRNA levels?, Nature, 547:7664, E19 | DOI
[32] D. Wang, B. Eraslan, T. Wieland, B. Hallström, T. Hopf, D. P. Zolg, J. Zecha, A. Asplund, L. H. Li, C. Meng, M. Frejno, “A deep proteome and transcriptome abundance atlas of 29 healthy human tissues”, Molecular systems biology, 15:2 (2019) | DOI
[33] N. Le Novere, M. Hucka, H. Mi, S. Moodie, F. Schreiber, A. Sorokin, E. Demir, K. Wegner, M. I. Aladjem, S. M. Wimalaratne, F. T. Bergman, “The systems biology graphical notation”, Nature Biotechnology, 27:8 (2009), 735 | DOI
[34] V. Likhoshvai, A. Ratushny, “Generalized Hill function method for modeling molecular processes”, Journal of Bioinformatics and Computational Biology, 5:02b (2007), 521–531 | DOI
[35] A. G. Sonntag, P. Dalle Pezze, D. P. Shanley, K. Thedieck, “A modelling-experimental approach reveals insulin receptor substrate (IRS)-dependent regulation of adenosine monosphosphate-dependent kinase (AMPK) by insulin”, The FEBS Journal, 279:18 (2012), 3314–3328 | DOI
[36] P. N. Brown, G. D. Byrne, A. C. Hindmarsh, “VODE: A variable-coefficient ODE solver”, SIAM Journal on Scientific and Statistical Computing, 10:5 (1989), 1038–1051 | DOI | MR | Zbl
[37] A. A. Benders, A. Oosterhof, R. A. Wevers, J. H. Veerkamp, “Excitation-contraction coupling of cultured human skeletal muscle cells and the relation between basal cytosolic Ca$^{2+}$ and excitability”, Cell calcium, 21:1 (1997), 81–91 | DOI
[38] W. J. Koopman, P. H. Willems, A. Oosterhof, T. H. van Kuppevelt, S. C. Gielen, “Amplitude modulation of nuclear Ca$^{2+}$ signals in human skeletal myotubes: a possible role for nuclear Ca$^{2+}$ buffering”, Cell calcium, 38:2 (2005), 141–152 | DOI
[39] K. D. Gejl, L. G. Hvid, S. J. Willis, E. Andersson, H. C. Holmberg, R. Jensen, U. Frandsen, J. Hansen, P. Plomgaard, N. Ørtenblad, “Repeated high-intensity exercise modulates Ca$^{2+}$ sensitivity of human skeletal muscle fibers”, Scandinavian Journal of Medicine Science in Sports, 26:5 (2016), 488–497 | DOI
[40] H. Rabitz, M. Kramer, D. Dacol, “Sensitivity analysis in chemical kinetics”, Annual Review of Physical Chemistry, 34:1 (1983), 419–461 | DOI
[41] T. E. Jensen, A. J. Rose, S. B. Jörgens, N. Brandt, P. Schjerling, J. F. Wojtaszewski, E. A. Richter, “Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction”, American Journal of Physiology-Endocrinology and Metabolism, 292:5 (2007), E1308–E1317 | DOI
[42] M. J. Abbott, A. M. Edelman, L. P. Turcotte, “CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle”, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 297:6 (2009), R1724–R1732 | DOI
[43] S. Gehlert, W. Bloch, F. Suhr, “Ca$^{2+}$-dependent regulations and signaling in skeletal muscle: from electro-mechanical coupling to adaptation”, International Journal of Molecular Sciences, 16:1 (2015), 1066–1095 | DOI
[44] B. Egan, J. R. Zierath, “Exercise metabolism and the molecular regulation of skeletal muscle adaptation”, Cell Metabolism, 17:2 (2013), 162–184 | DOI
[45] D. V. Popov, “Adaptation of skeletal muscle to contractile activity of various duration and intensity: role of PGC-1a”, Biochemistry (Moscow), 83:6 (2018), 781–799 | DOI
[46] L. Amoasii, W. Holland, E. Sanchez-Ortiz, K. K. Baskin, M. Pearson, S. C. Burgess, B. R. Nelson, R. Bassel-Duby, E. N. Olson, “A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism”, Genes development, 30:4 (2016), 434–446 | DOI
[47] L. Amoasii, E. Sanchez-Ortiz, T. Fujikawa, J. K. Elmquist, R. Bassel-Duby, E. N. Olson, “NURR1 activation in skeletal muscle controls systemic energy homeostasis”, PNAS, 116:23 (2019), 11299–11308 | DOI
[48] L. C. Chao, K. Wroblewski, O. R. Ilkayeva, R. D. Stevens, J. Bain, G. A. Meyer, S. Schenk, L. Martinez, L. Vergnes, V. A. Narkar, B. G. Drew, “Skeletal muscle Nur77 expression enhances oxidative metabolism and substrate utilization”, Journal of Lipid Research, 53:12 (2012), 2610–2619 | DOI
[49] T. Hai, T. Curran, “Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity”, PNAS, 88 (1991), 3720–3724 | DOI
[50] J. R. Newman, A. E. Keating, “Comprehensive identification of human bZIP interactions with coiled-coil arrays”, Science, 300:5628 (2003), 2097–2101 | DOI
[51] V. Matys, E. Fricke, R. Geffers, E. Gobling, M. Haubrock, R. Hehl, K. Hornischer, D. Karas, A. E. Kel, O. V. Kel-Margoulis, D. U. Kloos, “TRANSFAC\circledR: transcriptional regulation, from patterns to profiles”, NAR, 31:1 (2003), 374–378 | DOI
[52] I. Yevshin, R. Sharipov, S. Kolmykov, Y. Kondrakhin, F. Kolpakov, “GTRD: a database on gene transcription regulation – 2019 update”, NAR, 47:D1 (2018), D100–D105 | DOI
[53] X. Zhang, D. T. Odom, S. H. Koo, M. D. Conkright, G. Canettieri, J. Best, H. Chen, R. Jenner, E. Herbolsheimer, E. Jacobsen, S. Kadam, “Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues”, PNAS, 102:12 (2005), 4459–4464 | DOI
[54] P. Pattamaprapanont, C. Garde, O. Fabre, R. Barrès, “Muscle contraction induces acute hydroxymethylation of the exercise-responsive gene Nr4a3”, Frontiers in Endocrinology, 7 (2016), 165 | DOI
[55] P. T. Foteinou, A. Venkataraman, L. J. Francey, R. C. Anafi, J. B. Hogenesch, F. J. Doyle, “Computational and experimental insights into the circadian effects of SIRT1”, PNAS, 115:45 (2018), 11643–11648 | DOI
[56] M. Catoire, M. Mensink, M. V. Boekschoten, R. Hangelbroek, M. Müller, P. Schrauwen, S. Kersten, “Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle”, PloS One, 7:11 (2012), e51066 | DOI
[57] M. Fu, J. Zhang, Y. Lin, X. Zhu, M. U. Ehrengruber, Y. E. Chen, “Early growth response factor-1 is a critical transcriptional mediator of peroxisome proliferator-activated receptor-$\gamma$1 gene expression in human aortic smooth muscle cells”, Journal of Biological Chemistry, 277:30 (2002), 26808–26814 | DOI
[58] F. U. Mingui, J. Zhang, L. I.N. Yimin, Z. H.U. Xiaojun, Z. H.A. O. Luning, M. Ahmad, M. U. Ehrengruber, “Early stimulation and late inhibition of peroxisome proliferator-activated receptor gamma (PPARgamma) gene expression by transforming growth factor beta in human aortic smooth muscle cells: role of early growth-response factor-1 (Egr-1), activator protein 1 (AP1) and Smads”, Biochemical Journal, 370:3 (2003), 1019–1025 | DOI
[59] P. S. Pardo, J. S. Mohamed, M. A. Lopez, A. M. Boriek, “Induction of Sirt1 by mechanical stretch of skeletal muscle through the early response factor EGR1 triggers an antioxidative response”, Journal of Biological Chemistry, 286:4 (2011), 2559–2566 | DOI
[60] C. Y. Lin, J. Lovén, P. B. Rahl, R. M. Paranal, C. B. Burge, J. E. Bradner, T. I. Lee, R. A. Young, “Transcriptional amplification in tumor cells with elevated c-Myc”, Cell, 151:1 (2012), 56–67 | DOI
[61] Z. Nie, G. Hu, G. Wei, K. Cui, A. Yamane, W. Resch, R. Wang, D. R. Green, L. Tessarollo, R. Casellas, K. Zhao, “c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells”, Cell, 151:1 (2012), 68–79 | DOI
[62] P. B. Rahl, R. A. Young, “MYC and transcription elongation”, Cold Spring Harbor Perspectives in Medicine, 4:1 (2014), a020990 | DOI
[63] S. R. Frank, T. Parisi, S. Taubert, P. Fernandez, M. Fuchs, H. M. Chan, D. M. Livingston, B. Amati, “MYC recruits the TIP60 histone acetyltransferase complex to chromatin”, EMBO reports, 4:6 (2003), 575–580 | DOI
[64] F. Faiola, X. Liu, S. Lo, S. Pan, K. Zhang, E. Lymar, A. Farina, E. Martinez, “Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription”, Molecular and Cellular Biology, 25:23 (2005), 10220–10234 | DOI
[65] E. Guccione, F. Martinato, G. Finocchiaro, L. Luzi, L. Tizzoni, V. Dall'Olio, G. Zardo, C. Nervi, L. Bernard, B. Amati, “Myc-binding-site recognition in the human genome is determined by chromatin context”, Nature Cell Biology, 8:7 (2006), 764 | DOI
[66] P. S. Knoepfler, X. Y. Zhang, P. F. Cheng, P. R. Gafken, S. B. McMahon, R. N. Eisenman, “Myc influences global chromatin structure”, The EMBO Journal, 25:12 (2006), 2723–2734 | DOI
[67] F. Mastropasqua, G. Girolimetti, M. Shoshan, “PGC1$\alpha$: friend or foe in cancer?”, Genes, 9:1 (2018), 48 | DOI
[68] Z. Tan, X. Luo, L. Xiao, M. Tang, A. M. Bode, Z. Dong, Y. Cao, “The role of PGC1$\alpha$ in cancer metabolism and its therapeutic implications”, Molecular Cancer Therapeutics, 15:5 (2016), 774–782 | DOI
[69] P. Ahuja, P. Zhao, E. Angelis, H. Ruan, P. Korge, A. Olson, Y. Wang, E. S. Jin, F. M. Jeffrey, M. Portman, W. R. MacLellan, “Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice”, The Journal of Clinical Investigation, 120:5 (2010), 1494–1505 | DOI
[70] P. Sancho, E. Burgos-Ramos, A. Tavera, T. B. Kheir, P. Jagust, M. Schoenhals, D. Barneda, K. Sellers, R. Campos-Olivas, O. Graña, C. R. Viera, “MYC/PGC-1$\alpha$ balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells”, Cell Metabolism, 22:4 (2015), 590–605 | DOI