Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_1_a2, author = {I. Yu. Boiko and D. S. Anisimov and L. L. Smolyakova and M. A. Ryazanov}, title = {Approach to the selection of significant features in solving biomedical problems of binary classification of microarray data}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {4--19}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a2/} }
TY - JOUR AU - I. Yu. Boiko AU - D. S. Anisimov AU - L. L. Smolyakova AU - M. A. Ryazanov TI - Approach to the selection of significant features in solving biomedical problems of binary classification of microarray data JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - 4 EP - 19 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a2/ LA - ru ID - MBB_2020_15_1_a2 ER -
%0 Journal Article %A I. Yu. Boiko %A D. S. Anisimov %A L. L. Smolyakova %A M. A. Ryazanov %T Approach to the selection of significant features in solving biomedical problems of binary classification of microarray data %J Matematičeskaâ biologiâ i bioinformatika %D 2020 %P 4-19 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a2/ %G ru %F MBB_2020_15_1_a2
I. Yu. Boiko; D. S. Anisimov; L. L. Smolyakova; M. A. Ryazanov. Approach to the selection of significant features in solving biomedical problems of binary classification of microarray data. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 1, pp. 4-19. http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a2/
[1] B. Y. Renard, M. Löwer, Y. Kühne, U. Reimer, A. Rothermel, O. Türeci, J. C. Castle, U. Sahin, “Rapmad: Robust analysis of peptide microarray data”, BMC Bioinformatics, 12 (2011) | DOI
[2] J.Önskog, E. Freyhult, M. Landfors, P. Rydén, T. R. Hvidsten, “Classification of microarrays; synergistic effects between normalization, gene selection and machine learning”, BMC Bioinformatics, 12 (2011) | DOI
[3] A. Mohammed, G. Biegert, J. Adamec, T. Helikar, “CancerDiscover: An integrative pipeline for cancer biomarker and cancer class prediction from high-throughput sequencing data”, Oncotarget, 9:2 (2018), 2565–2573 | DOI
[4] R. Alanni, J. Hou, H. Azzawi, Y. Xiang, “A novel gene selection algorithm for cancer classification using microarray datasets”, BMC Med Genomics, 12 (2019) | DOI
[5] M. Xi, J. Sun, L. Liu, F. Fan, X. Wu, “Cancer Feature Selection and Classification Using a Binary Quantum-Behaved Particle Swarm Optimization and Support Vector Machine”, Computational and Mathematical Methods in Medicine, 2016 (2016), 1–9 | DOI
[6] Z. Hira, D. Gillies, “A review of feature selection and feature extraction methods applied on microarray data”, Advances in Bioinformatics, 2015 (2015), 1–13 | DOI
[7] Y. Saeys, I. Inza, P. Larranaga, “A review of feature selection techniques in bioinformatics”, Bioinformatics, 23:19 (2007), 2507–2517 | DOI
[8] C. Lazar, J. Taminau, S. Meganck, D. Steenhoff, A. Coletta, C. Molter, V. de Schaetzen, R. Duque, H. Bersini, A. Nowe, “A survey on filter techniques for feature selection in gene expression microarray analysis”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9:4 (2012), 1106–1119 | DOI
[9] P. Jafari, F. Azuaje, “An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors”, BMC Medical Informatics and Decision Making, 6 (2006) | DOI | Zbl
[10] T. Nguyen, A. Khosravi, D. Creighton, S. Nahavandi, “Hierarchical Gene Selection and Genetic Fuzzy System for Cancer Microarray Data Classification”, PLoS ONE, 10:3 (2015) | DOI
[11] M. Shahjaman, M. Rahman, S. Islam, M. Mollah, “A Robust Approach for Identification of Cancer Biomarkers and Candidate Drugs”, Medicina, 55:6 (2019) | DOI
[12] M. Maniruzzaman, J. Rahman, B. Ahammed, M. Abedin, H. Suri, M. Biswas, A. El-Baz, P. Bangeas, G. Tsoulfas, J. Suri, “Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms”, Computer Methods and Programs in Biomedicine, 176 (2019), 173–193 | DOI
[13] M. Momenzadeh, M. Sehhati, H. Rabbani, “A novel feature selection method for microarray data classification based on hidden Markov model”, Journal of Biomedical Informatics, 95 (2019) | DOI
[14] M. Boareto, N. Caticha, “t-Test at the Probe Level: An Alternative Method to Identify Statistically Significant Genes for Microarray Data”, Microarrays, 3:4 (2014), 340–351 | DOI
[15] R. Fox, M. Dimmic, “A two-sample Bayesian t-test for microarray data”, BMC Bioinformatics, 7 (2006) | DOI
[16] A. Shukla, D. Tripathi, “Identification of potential biomarkers on microarray data using distributed gene selection approach”, Mathematical Biosciences, 315 (2019) | DOI | MR | Zbl
[17] V. Bolon-Canedo, N. Sanchez-Marono, A. Alonso-Betanzos, J. Benitez, F. Herrera, “A review of microarray datasets and applied feature selection methods”, Information Sciences, 282 (2014), 111–135 | DOI
[18] N. Aboudi, L. Benhlima, “Review on wrapper feature selection approaches”, 2016 International Conference on Engineering MIS, ICEMIS, IEEE, 2016, 1–5 | DOI
[19] H. Sanz, C. Valim, E. Vegas, J. Oller, F. Reverter, “SVM-RFE: selection and visualization of the most relevant features through non-linear kernels”, BMC Bioinformatics, 19 (2018) | DOI | Zbl
[20] Z. Li, W. Xie, T. Liu, “Efficient feature selection and classification for microarray data”, PLoS ONE, 13:8 (2018) | DOI
[21] A. Anaissi, P. Kennedy, M. Goyal, “Feature selection of imbalanced gene expression microarray data”, 2011 12th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD, IEEE, 2011, 73–78 | DOI
[22] C. Kang, Y. Huo, L. Xin, B. Tian, B. Yu, “Feature selection and tumor classification for microarray data using relaxed Lasso and generalized multi-class support vector machine”, Journal of theoretical biology, 463 (2019), 77–91 | DOI | MR | Zbl
[23] L. Chuang, C. Yang, K. Wu, C. Yang, “A hybrid feature selection method for DNA microarray data”, Computers in Biology and Medicine, 41:4 (2011), 228–237 | DOI
[24] L. Huijuan, C. Junying, Y. Ke, J. Qun, X. Yu, G. Zhigang, “A hybrid feature selection algorithm for gene expression data classification”, Neurocomputing, 256 (2017), 56–62 | DOI
[25] A. Shukla, P. Singh, V. Vardhan, “A hybrid gene selection method for microarray recognition”, Biocybernetics and Biomedical Engineering, 38:4 (2018), 975–991 | DOI
[26] Y. Sun, C. Lu, X. Li, “The Cross-Entropy Based Multi-Filter Ensemble Method for Gene Selection”, Genes, 9:5 (2018) | DOI
[27] V. Bolon-Canedo, N. Sanchez-Marono, A. Alonso-Betanzos, “An ensemble of filters and classifiers for microarray data classification”, Pattern Recognition, 45:1 (2012), 531–539 | DOI
[28] V. Bolon-Canedo, N. Sanchez-Marono, A. Alonso-Betanzos, “Data classification using an ensemble of filters”, Neurocomputing, 135 (2014), 13–20 | DOI
[29] K. Strimbu, J. A. Tavel, What are Biomarkers?, Current Opinion in HIV and AIDS, 192:3 (2010), 214–216 | DOI
[30] S. V. Dronov, R. V. Petukhova, “Odin vid svyazi mezhdu nominalnoi i binarnoi peremennymi”, Izvestiya AltGU, 65:1/2 (2010), 34–36 | MR
[31] S. V. Dronov, I. Yu. Boiko, “Metod otsenki stepeni svyazi binarnogo i nominalnogo pokazatelei”, Prikladnaya diskretnaya matematika, 30:4 (2015), 109–119 | DOI | Zbl
[32] D. S. Anisimov, S. V. Podlesnykh, E. A. Kolosova, D. N. Scherbakov, V. D. Petrova, S. A. Dzhonston, A. F. Lazarev, N. M. Oskorbin, A. I. Shapoval, M. A. Ryazanov, “Analiz mnogomernykh dannykh peptidnykh mikrochipov s ispolzovaniem metoda proektsii na latentnye struktury”, Matematicheskaya biologiya i bioinformatika, 12:2 (2017), 435–445 | DOI
[33] E. Gravier, “A prognostic DNA signature for T1T2 node-negative breast cancer patients”, Genes, Chromosomes and Cancer, 49:12 (2010), 1125–1134 | DOI
[34] Student, “The probable error of a mean”, Biometrika, 6:1 (1908), 1–25 | DOI
[35] H. B. Mann, D. R. Whitney, “On a test of whether one of two random variables is stochastically larger than the other”, Annals of Mathematical Statistics, 18 (1947), 50–60 | DOI | MR | Zbl
[36] D. S. Anisimov, M. A. Ryazanov, A. I. Shapoval, “Primenenie metoda proektsii na latentnye struktury v zadachakh klassifikatsii na primere dannykh peptidnykh mikrochipov”, Sbornik trudov vserossiiskoi konferentsii po matematike “MAK-2016” (Barnaul, 29 iyunya–1 iyulya 2016 g.), Izd-vo AltGU, Barnaul, 2016, 92
[37] K. Esbensen, Analiz mnogomernykh dannykh. Izbrannye glavy, Izd-vo Alt. un-ta, Barnaul, 2003, 157 pp.
[38] D. R. Cox, “The regression analysis of binary sequences”, Journal of the Royal Statistical Society, 20:2 (1958), 215–242 | DOI | MR | Zbl
[39] V. N. Vapnik, Vosstanovlenie zavisimostei po empiricheskim dannym, Nauka, M., 1979, 448 pp. | MR
[40] T. M. Cover, P. E. Hart, “Nearest neighbor pattern classification”, IEEE Transactions on Information Theory, 13:1 (1967), 21–27 | DOI | MR | Zbl
[41] L. Breiman, “Random Forests”, Machine Learning, 45:1 (2001), 5–32 | DOI | MR | Zbl
[42] B. E. Boser, I. M. Guyon, V. N. Vapnik, “A Training Algorithm for Optimal Margin Classifiers”, Proceedings of the 5th Annual Workshop on Computational Learning Theory, COLT-92 (Pittsburgh, 27-29 July 1992), New York, 1992, 144–152 | DOI
[43] Hyperopt: Distributed Asynchronous Hyper-parameter Optimization, (data obrascheniya: 16.04.2019) https://github.com/hyperopt/hyperopt
[44] W. J. Youden, “Index for rating diagnostic tests”, Cancer, 3:1 (1950), 32–35 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI