Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_1_a0, author = {P. S. Onishchenko and K. Yu. Klyshnikov and E. A. Ovcharenko}, title = {Artificial neural networks in cardiology: analysis of numerical and text data}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {40--56}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a0/} }
TY - JOUR AU - P. S. Onishchenko AU - K. Yu. Klyshnikov AU - E. A. Ovcharenko TI - Artificial neural networks in cardiology: analysis of numerical and text data JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - 40 EP - 56 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a0/ LA - ru ID - MBB_2020_15_1_a0 ER -
%0 Journal Article %A P. S. Onishchenko %A K. Yu. Klyshnikov %A E. A. Ovcharenko %T Artificial neural networks in cardiology: analysis of numerical and text data %J Matematičeskaâ biologiâ i bioinformatika %D 2020 %P 40-56 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a0/ %G ru %F MBB_2020_15_1_a0
P. S. Onishchenko; K. Yu. Klyshnikov; E. A. Ovcharenko. Artificial neural networks in cardiology: analysis of numerical and text data. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 1, pp. 40-56. http://geodesic.mathdoc.fr/item/MBB_2020_15_1_a0/
[1] R. Dhingra, R. S. Vasan, “Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers”, Trends in Cardiovascular Medicine, 27:2 (2017), 123–133 | DOI | MR
[2] K. V. Kopeva, E. V. Grakova, A. T. Teplyakov, “Novye markery serdechnoi nedostatochnosti: znachenie dlya diagnostiki i prognozirovaniya NT-proBNP i interleikinovykh retseptorov – chlenov semeistva ST2”, Kompleksnye problemy serdechno-sosudistykh zabolevanii, 7:1 (2018), 94–101 | DOI
[3] J. Wang, G. J. Tan, L. N. Han, Y. Y. Bai, M. He, H. B. Liu, “Novel biomarkers for cardiovascular risk prediction”, Journal of Geriatric Cardiology, 14:2 (2017), 135–150 | DOI
[4] P. Pyakurel, P. Karki, M. Lamsal, A. Ghimire, P. K. Pokharel, “Cardiovascular risk factors among industrial workers: a cross-sectional study from eastern Nepal”, J. Occup. Med. Toxicol, 11 (2016), 25 | DOI
[5] M. Kinoshita, K. Yokote, H. Arai, M. Iida, Y. Ishigaki, S. Ishibashi, S. Umemoto, G. Egusa, H. Ohmura, T. Okamura, S. Kihara, S. Koba, I. Saito, T. Shoji, H. Daida, K. Tsukamoto, J. Deguchi, S. Dohi, K. Dobashi, H. Hamaguchi, M. Hara, T. Hiro, S. Biro, Y. Fujioka, C. Maruyama, Y. Miyamoto, Y. Murakami, M. Yokode, H. Yoshida, H. Rakugi, A. Wakatsuki, S. Yamashita, “Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2017”, J. Atheroscler. Thromb., 25:9 (2018), 846–84 | DOI
[6] Tabakaev M.V., Artamonova G.V., “Urbanization and cardiovascular diseases in modern society”, Russ. J. Cardiol., 6:122 (2015), 94–99 | DOI
[7] K. Studziński, T. Tomasik, J. Krzysztoń, J. Jóźwiak, A. Windak, “Effect of using cardiovascular risk scoring in routine risk assessment in primary prevention of cardiovascular disease: protocol for an overview of systematic reviews”, BMJ Open, 7:3 (2017) | DOI
[8] N. Garg, S. K. Muduli, A. Kapoor, S. Tewari, S. Kumar, R. Khanna, P. K. Goel, “Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses”, Indian Heart Journal, 69:4 (2017), 458–463 | DOI
[9] F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, Y. Wang, Q. Dong, H. Shen, Y. Wang, “Artificial intelligence in healthcare: past, present and future”, Stroke Vasc. Neurol., 2:4 (2017), 230–243 | DOI
[10] L. Sacchi, G. Lanzola, N. Viani, S. Quaglini, “Personalization and Patient Involvement in Decision Support Systems: Current Trends”, Yearb. Med. Inform., 10:1 (2015), 106–118 | DOI
[11] R. A. Miller, “Medical diagnostic decision support systems past, present, and future: a threaded bibliography and brief commentary”, J. Am. Med. Inform. Assoc., 1994, no. 1, 8–27 | DOI
[12] P. Tiwari, N. Shah, E. Samuel, P. Shah, Y. Patel, P. Tiwari, “Clinical decision support systems”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 5:2 (2019), 993–995 | DOI
[13] A. N. Ramesh, C. Kambhampati, J. R.T. Monson, P. J. Drew, “Artificial intelligence in medicine”, Ann. R. Coll. Surg. Engl., 86:5 (2004), 334–338 | DOI
[14] V. S. Medvedev, V. G. Potemkin, Neironnye seti MATLAB 6, Dialog-MIFI, M., 2002, 496 pp.
[15] L. Herkenhoff, J. Fogli, Applied statistics for business and management using Microsoft Excel, Springer, New York, 2013 | DOI
[16] C. H. Weiß, “StatSoft, Inc., Tulsa, OK.: STATISTICA, Version 8”, Advances in Statistical Analysis, 91:3 (2007), 339–341 | DOI | Zbl
[17] D. Grapov, J. Fahrmann, K. Wanichthanarak, S. Khoomrung, “Rise of deep learning for genomic, proteomic, and metabolomic data integration in precision medicine”, OMICS: A Journal of Integrative Biology, 22:10 (2018), 630–636 | DOI
[18] S. H. Han, K. W. Kim, S. Kim, Y. C. Youn, “Artificial neural network: understanding the basic concepts without mathematics”, Dement Neurocognitive Disord, 17:3 (2018), 83–89 | DOI
[19] O. G. Zharikov, V. A. Kovalev, A. A. Litvin, “Sovremennye vozmozhnosti ispolzovaniya nekotorykh ekspertnykh sistem v meditsine”, Vrach i informatsionnye tekhnologii, 2008, no. 5, 24–30
[20] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, Cambridge, 2016, 800 pp. | MR | Zbl
[21] G. Panchal, A. Ganatra, P. Shah, D. Panchal, “Determination of over-learning and over-fitting problem in back propagation neural network”, International Journal on Soft Computing, 2:2 (2011), 40–51 | DOI | MR
[22] G. A. Rozykhodzhaeva, D. A. Rozykhodzhaeva, “Osobennosti formirovaniya obuchayuschei vyborki i obucheniya neironnoi seti s nepolnymi vkhodnymi dannymi pri reshenii chastnykh meditsinskikh zadach”, Nauchnoe obozrenie. Biologicheskie nauki, 2017, no. 5, 28–32
[23] E. Choi, A. Schuetz, W. F. Stewart, J. Sun, “Using recurrent neural network models for early detection of heart failure onset”, J. Am. Med. Inform. Assoc., 24:2 (2017), 361–370 | DOI
[24] J. K. Kim, S. Kang, “Neural Network-Based Coronary Heart Disease Risk Prediction Using Feature Correlation Analysis”, J. Healthc. Eng., 2017 | DOI
[25] A. I. Kalyakulina, I. I. Yusipov, V. A. Moskalenko, A. V. Nikolskiy, A. A. Kozlov, N. Yu. Zolotykh, M. V. Ivanchenko, “Finding morphology points of electrocardiographic-signal waves using wavelet analysis”, Radiophysics and Quantum Electronics, 61:8-9 (2019), 689–703 | DOI
[26] G. Sannino, G. De Pietro, “A deep learning approach for ECG-based heartbeat classification for arrhythmia detection”, Future Generation Computer Systems, 86 (2018), 446–455 | DOI
[27] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, H. E. Stanley, “Physiobank, physiotoolkit, physionet”, Circulation, 101:23 (2000) | DOI
[28] G. B. Moody, R. G. Mark, “The impact of the MIT-BIH arrhythmia database”, IEEE Engineering in Medicine and Biology Magazine, 20:3 (2001), 45–50 | DOI
[29] Ö. Y{\i}ld{\i}r{\i}m, P. Pławiak, R. S. Tan, U. R. Acharya, “Arrhythmia detection using deep convolutional neural network with long duration ECG signals”, Computers in biology and medicine, 102 (2018), 411–420 | DOI
[30] V. Moskalenko, N. Zolotykh, G. Osipov, “Deep Learning for ECG Segmentation”, International Conference on Neuroinformatics, eds. Kryzhanovsky B., W. Dunin-Barkowski, V. Redko, Yu. Tiumentsev, Springer, Cham, 2019, 246–254
[31] V. A. Moskalenko, A. V. Nikolskii, N. Yu. Zolotykh, A. A. Kozlov, K. A. Kosonogov, A. I. Kalyakulina, I. I. Yusipov, V. M. Levanov, “Programmnyi kompleks «Kiberserdtse-diagnostika» dlya avtomaticheskogo analiza elektrokardiogramm s primeneniem metodov mashinnogo obucheniya”, Sovremennye tekhnologii v meditsine, 11:2 (2019), 86–91 | DOI
[32] S. Savalia, V. Emamian, “Cardiac arrhythmia classification by multi-layer perceptron and convolution neural networks”, Bioengineering (Basel), 5:2 (2018) | DOI
[33] P. Lu, S. Guo, H. Zhang, Q. Li, Y. Wang, Y. Wang, L. Qi, “Research on improved depth belief network-based prediction of cardiovascular diseases”, J. Healthc Eng., 2018 | DOI | MR
[34] S. Iftikhar, K. Fatima, A. Rehman, A. S. Almazyad, T. Saba, “An evolution based hybrid approach for heart disease classification and associated risk factor identification”, Biomedical Research, 28:8 (2017), 3451–3455
[35] V. Chaurasia, S. Pal, “Data Mining Approach to Detect Heart Diseases”, International Journal of Advanced Computer Science and Information Technology, 2:4 (2013), 56–66
[36] G. H. Tison, J. M. Sanchez, B. Ballinger, A. Singh, J. E. Olgin, M. J. Pletcher, E. Vittinghoff, E. S. Lee, S. M. Fan, R. A. Gladstone, C. Mikell, N. Sohoni, J. Hsieh, G. M. Marcus, “Passive detection of atrial fibrillation using a commercially available smartwatch”, JAMA Cardiology, 3:5 (2018), 409–416 | DOI
[37] P. F. Tsai, P. C. Chen, Y. Y. Chen, H. Y. Song, H. M. Lin, F. M. Lin, Q.-P. Huang, “Length of hospital stay prediction at the admission stage for cardiology patients using artificial neural network”, J. Healthc. Eng., 2016 | DOI
[38] E. Kutafina, I. Bechtold, K. Kabino, S. M. Jonas, “Recursive neural networks in hospital bed occupancy forecasting”, BMC Medical Informatics and Decision Making, 19:39 (2019) | DOI
[39] J. M. Kwon, Y. Lee, Y. Lee, S. Lee, J. Park, “An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest”, J. Am. Heart Assoc., 7:13 (2018) | DOI
[40] A. Meyer, D. Zverinski, B. Pfahringer, J. Kempfert, T. Kuehne, S. H. Sündermann, C. Stamm, T. Hofmann, V. Falk, C. Eickhoff, “Machine learning for real-time prediction of complications in critical care: a retrospective study”, Lancet Respir. Med., 6:12 (2018), 905–914 | DOI
[41] S. Nanayakkara, S. Fogarty, M. Tremeer, K. Ross, B. Richards, C. Bergmeir, S. Xu, D. Stub, K. Smith, M. Tacey, D. Liew, D. Pilcher, D. M. Kaye, “Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry study”, PLoS Med, 15:11 (2018) | DOI
[42] L. N. Yasnitskii, F. M. Cherepanov, “Neiroekspertnaya sistema diagnostiki, prognozirovaniya i upravleniya riskami serdechno-sosudistykh zabolevanii”, Prikladnaya matematika i voprosy upravleniya, 2018, no. 3, 107–126 | DOI
[43] R. Narain, S. Saxena, A. K. Goyal, “Cardiovascular risk prediction: a comparative study of Framingham and quantum neural network based approach”, Patient Prefer Adherence, 2016, no. 10, 1259–1270 | DOI
[44] A. Kordzadeh, S. S. Esfahlani, “The Role of Artificial Intelligence in the Prediction of Functional Maturation of Arteriovenous Fistula”, Ann. Vasc. Dis., 12:1 (2019), 44–49 | DOI
[45] H. Li, M. Luo, J. Zheng, J. Luo, R. Zeng, N. Feng, Q. Du, J. Fang, “An artificial neural network prediction model of congenital heart disease based on risk factors”, Medicine (Baltimore), 96:6 (2017) | DOI | Zbl
[46] S. F. Weng, J. Reps, J. Kai, J. M. Garibaldi, N. Qureshi, “Can machine-learning improve cardiovascular risk prediction using routine clinical data”, PLoS ONE, 12:4 (2017) | DOI
[47] K. K. Stout, C. J. Daniels, J. A. Aboulhosn, B. Bozkurt, C. S. Broberg, J. M. Colman, S. R. Crumb, J. A. Dearani, S. Fuller, M. Gurvitz, P. Khairy, M. J. Landzberg, A. Saidi, A. M. Valente, G. F. Van Hare, “AHA/ACC guideline for the management of adults with congenital heart disease”, Journal of the American College of Cardiology, 2018 | DOI
[48] A. Sbrollini, M. C. De Jongh, C. C. Ter Haar, R. W. Treskes, S. Man, L. Burattini, C. A. Swenne, “Serial electrocardiography to detect newly emerging or aggravating cardiac pathology: a deep-learning approach”, Biomed. Eng. Online, 18:15 (2019) | DOI | MR
[49] S. Sadek, A. Al-Hamadi, B. Michaelis, U. Sayed, “Face detection and localization in color images: an efficient neural approach”, Journal of Software Engineering and Applications, 04:12 (2011), 682–687 | DOI
[50] T. Xiao, S. Li, B. Wang, L. Lin, X. Wang, End-to-end deep learning for person search, , 2016 1604.01850 [cs.CV]
[51] R. Bin Sulaiman, “Artificial Intelligence Based Autonomous Car”, SSRN Electronic Journal, 2018 | DOI
[52] P. Shaw, I. Williams, “Reuse in practice: the UK's car and clothing sectors”, Detritus: Multidisciplinary journal of waste resources residues, 04 (2018), 36–47 | DOI
[53] IBM Watson, (data obrascheniya: 28.01.2020) https://www.ibm.com/watson/
[54] A. Curioni-Fontecedro, “A new era of oncology through artificial intelligence”, ESMO Open, 2:2 (2017) | DOI
[55] Y. Chen, J. D. Elenee Argentinis, G. Weber, “IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research”, Clin. Ther., 38:4 (2016), 688–701 | DOI
[56] A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn, M. P. Turakhia, A. Y. Ng, “Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network”, Nature Medicine, 25:1 (2019), 65–69 | DOI
[57] E. Kańtoch, “Recognition of sedentary behavior by machine learning analysis of wearable sensors during activities of daily living for telemedical assessment of cardiovascular risk”, Sensors, 18:10 (2018) | DOI
[58] L. J. Mena, V. G. Félix, A. Ochoa, R. Ostos, E. González, J. Aspuru, P. Velarde, G. E. Maestre, “Mobile personal health monitoring for automated classification of electrocardiogram signals in elderly”, Computational and Mathematical Methods in Medicine, 2018 (2018), 1–9 | DOI | MR
[59] F. Beritelli, G. Capizzi, G. Lo Sciuto, C. Napoli, F. Scaglione, “Automatic heart activity diagnosis based on Gram polynomials and probabilistic neural networks”, Biomed. Eng. Lett., 8:1 (2017), 77–85 | DOI
[60] A. Palomäki, V. Hällberg, M. Ala-Korpela, P. T. Kovanen, K. Malminiemi, “Prompt impact of first prospective statin mega-trials on postoperative lipid management of CABG patients: a 20-year follow-up in a single hospital”, Lipids Health Dis., 15 (2016), 124 | DOI
[61] J. Niemi, V. P. Mäkinen, J. Heikkonen, L. Tenkanen, Y. Hiltunen, M. L. Hannuksela, M. Jauhiainen, C. Forsblom, M. R. Taskinen, Y. A. Kesäniemi, M. J. Savolainen, K. Kaski, P. H. Groop, P. T. Kovanen, M. Ala-Korpela, “Estimation of VLDL, IDL, LDL, HDL2, apoA-I, and apoB from the Friedewald inputs–apoB and IDL, but not LDL, are associated with mortality in type 1 diabetes”, Annals of Medicine, 41:6 (2009), 451–461 | DOI
[62] J. Yao, S. Tridandapani, W. F. Auffermann, C. A. Wick, P. T. Bhatti, “An adaptive seismocardiography (scg)-ecg multimodal framework for cardiac gating using artificial neural networks”, IEEE J. Transl. Eng. Health Med., 6 (2018) | DOI
[63] S. Sakr, R. Elshawi, A. Ahmed, W. T. Qureshi, C. Brawner, S. Keteyian, M. J. Blaha, M. H. Al-Mallah, “Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project”, PLoS One, 13:4 (2018) | DOI
[64] P. D. Myers, B. M. Scirica, C. M. Stultz, “Machine learning improves risk stratification after acute coronary syndrome”, Sci. Rep., 7 (2017) | DOI