Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_a4, author = {A. E. Medvedev and P. S. Gafurova}, title = {Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t62--t75}, publisher = {mathdoc}, volume = {14}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_a4/} }
TY - JOUR AU - A. E. Medvedev AU - P. S. Gafurova TI - Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - t62 EP - t75 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_a4/ LA - ru ID - MBB_2019_14_a4 ER -
%0 Journal Article %A A. E. Medvedev %A P. S. Gafurova %T Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P t62-t75 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_a4/ %G ru %F MBB_2019_14_a4
A. E. Medvedev; P. S. Gafurova. Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019), pp. t62-t75. http://geodesic.mathdoc.fr/item/MBB_2019_14_a4/
[1] E. R. Veibel, Morfometriya legkikh cheloveka, Meditsina, M., 1970, 176 pp.
[2] Y. Zhao, B. B. Lieber, “Steady inspiratory flow in a model symmetric bifurcation”, Journal of Biomechanical Engineering, 116 (1994), 488–496 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.2895800'>10.1115/1.2895800</ext-link>
[3] Y. Zhao, C. T. Brunskill, B. B. Lieber, “Inspiratory and expiratory steady flow analysis in a model symmetrically bifurcating airway”, Journal of Biomechanical Engineering, 119 (1997), 52–58 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.2796064'>10.1115/1.2796064</ext-link>
[4] C. J. Hegedüs, I. Balásházy, Á. Farkas, “Detailed mathematical description of the geometry of airway bifurcations”, Respiratory Physiology & Neurobiology, 141:1 (2004), 99–114 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.resp.2004.03.004'>10.1016/j.resp.2004.03.004</ext-link>
[5] T. Heistracher, W. Hofmann, “Physiologically realistic models of bronchial airway bifurcations”, J. Aerosol Sci., 26:3 (1995), 497–509 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0021-8502(94)00113-D'>10.1016/0021-8502(94)00113-D</ext-link>
[6] C. Ertbruggen, C. Hirsch, M. Paiva, “Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics”, J. Appl. Physiol., 98 (2005), 970–980 <ext-link ext-link-type='doi' href='https://doi.org/10.1152/japplphysiol.00795.2004'>10.1152/japplphysiol.00795.2004</ext-link>
[7] A. F. Tena, P. Casan, J. Fernández, C. Ferrera, A. Marcos, “Characterization of particle deposition in a lung model using an individual path”, EPJ Web of Conferences, 45 (2013), 01079 <ext-link ext-link-type='doi' href='https://doi.org/10.1051/epjconf/20134501079'>10.1051/epjconf/20134501079</ext-link>
[8] A. F. Tena, J. Fernández, E. lvarez, P. Casan, D. K. Walters, “Design of a numerical model of lung by means of a special boundary condition in the truncated branches”, International Journal for Numerical Methods in Biomedical Engineering, 33:6 (2017), e2830 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cnm.2830'>10.1002/cnm.2830</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3670871'>3670871</ext-link>
[9] A. F. Tena, J. F. Francos, E. lvarez, P. A. Casan, “A three dimensional in SILICO model for the simulation of inspiratory and expiratory airflow in humans”, Engineering Applications of Computational Fluid Mechanics, 9:1 (2015), 187–198 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/19942060.2015.1004819'>10.1080/19942060.2015.1004819</ext-link>
[10] T. Gemci, V. Ponyavin, Y. Chen, H. Chen, R. Collins, “CFD Simulation of Airflow in a 17-Generation Digital Reference Model of the Human Bronchial Tree”, Series on Biomechanics, 23:1 (2007), 5–18
[11] T. Gemci, V. Ponyavin, Y. Chen, H. Chen, R. Collins, “Computational model of airflow in upper 17 generations of human respiratory tract”, Journal of Biomechanics, 41 (2008), 2047–2054 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jbiomech.2007.12.019'>10.1016/j.jbiomech.2007.12.019</ext-link>
[12] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “Modelirovanie protsessa dykhaniya cheloveka: kontseptualnaya i matematicheskaya postanovki”, Matematicheskaya biologiya i bioinformatika, 11:1 (2016), 64–80 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2016.11.64'>10.17537/2016.11.64</ext-link>
[13] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, A. V. Babushkina, “Modelirovanie techeniya zapylennogo vozdukha v respiratornom trakte”, Rossiiskii zhurnal biomekhaniki, 22:3 (2018), 301–314
[14] J. Choi, Multiscale numerical analysis of airflow in CT-based subject specific breathing human lungs, PhD Dissertation (Doctor of Philosophy), University of Iowa, Iowa, 2011, 259 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.17077/etd.n7qno7h9'>10.17077/etd.n7qno7h9</ext-link>
[15] A. Khem, D. Kormak, Gistilogiya, v. 4, Mir, M., 1983, 245 pp.
[16] A. L. Mescher, Junqueira's Basic Histology: Text and Atlas, McGraw Hill Medical, New York, 2013, 560 pp.
[17] A. L. Chernyaev, M. V. Samsonova, “Varianty khronicheskoi obstruktivnoi bolezni legkikh s pozitsii patologoanatoma”, Pulmonologiya, 2013, no. 3, 93–96 <ext-link ext-link-type='doi' href='https://doi.org/10.18093/0869-0189-2013-0-3-93-96'>10.18093/0869-0189-2013-0-3-93-96</ext-link>
[18] Solopov V. N., Astma. Kak vernut zdorove, M., 2002, 240 pp. (data obrascheniya: 18.12.2019) <ext-link ext-link-type='uri' href='http://health.astma.ru/'>http://health.astma.ru/</ext-link>