Diverse RNA pseudoknots exist for short stems only
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019), pp. t37-t43.

Voir la notice de l'article provenant de la source Math-Net.Ru

RNA secondary structure prediction including pseudoknotted structures of arbitrary types is a well-known NP-hard problem of computational biology. By limiting the possible types of pseudoknots the problem can be solved in polynomial time. According to the empirical thermodynamic parameters, the formation of a stem starts to decrease free energy of the structure only after the formation of the third stack of base pairs. Thus, the short stems may be unstable and provide a limited contribution to the overall free energy of a folded RNA molecule. Therefore, detailed analysis of stems in pseudoknots could facilitate reducing pseudoknots complexity. In this paper, we show that the pseudoknots from experimentally determined RNA spatial structures are primarily formed by short stems of 2–3 base pairs. The short stems tend to avoid hairpins and prefer internal loops that indicates that they could be energetically insignificant. An exclusion of short stems reduces the diversity of pseudoknots to two basic types which are H-knots (signature abAB) and kissing loops (signature abAcBC). The only exception is a pseudoknot formed by 12–13 stems that was found in group II intron molecule from Oceanobacillus iheyensis only in the presence of exon segment IBS1. In the absence of IBS1 the pseudoknot is reduced to kissing loops type.
@article{MBB_2019_14_a2,
     author = {E. F. Baulin and A. V. Korinevskaya and P. O. Tikhonova and M. A. Roitberg},
     title = {Diverse {RNA} pseudoknots exist for short stems only},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t37--t43},
     publisher = {mathdoc},
     volume = {14},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_a2/}
}
TY  - JOUR
AU  - E. F. Baulin
AU  - A. V. Korinevskaya
AU  - P. O. Tikhonova
AU  - M. A. Roitberg
TI  - Diverse RNA pseudoknots exist for short stems only
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - t37
EP  - t43
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_a2/
LA  - en
ID  - MBB_2019_14_a2
ER  - 
%0 Journal Article
%A E. F. Baulin
%A A. V. Korinevskaya
%A P. O. Tikhonova
%A M. A. Roitberg
%T Diverse RNA pseudoknots exist for short stems only
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P t37-t43
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_a2/
%G en
%F MBB_2019_14_a2
E. F. Baulin; A. V. Korinevskaya; P. O. Tikhonova; M. A. Roitberg. Diverse RNA pseudoknots exist for short stems only. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019), pp. t37-t43. http://geodesic.mathdoc.fr/item/MBB_2019_14_a2/

[1] W. B. Marzluff, “Twenty years of RNA: reflections on post-transcriptional regulation”, RNA (New York, NY), 21:4 (2015), 687–689 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1261/rna.050997.115'>http://dx.doi.org/10.1261/rna.050997.115</ext-link>

[2] A. M. Eiring, J. G. Harb, P. Neviani, Ch. Garton, J. J. Oaks, R. Spizzo, Sh. Liu, S. Schwind, R. Santhanam, Ch. J. Hickey et al., “miR-328 Functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts”, Cell, 140:5 (2010), 652–665 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.cell.2010.01.007'>http://dx.doi.org/10.1016/j.cell.2010.01.007</ext-link>

[3] D. P. Bartel, “MicroRNAs: target recognition and regulatory functions”, Cell, 136:2 (2009), 215–233 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.cell.2009.01.002'>http://dx.doi.org/10.1016/j.cell.2009.01.002</ext-link>

[4] P. Kapranov, J. Cheng, S. Dike, D. A. Nix, R. Duttagupta, A. T. Willingham, P. F. Stadler, J. Hertel, J. Hackermuller, I. L. Hofacker et al., “RNA maps reveal new RNA classes and a possible function for pervasive transcription”, Science, 316:5830 (2007), 1484–1488 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1126/science.1138341'>http://dx.doi.org/10.1126/science.1138341</ext-link>

[5] B. A. Shapiro, Ya. G. Yingling, W. Kasprzak, E. Bindewald, “Bridging the gap in RNA structure prediction”, Current opinion in structural biology, 17:2 (2007), 157–165 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.sbi.2007.03.001'>http://dx.doi.org/10.1016/j.sbi.2007.03.001</ext-link>

[6] T. Rastogi, T. L. Beattie, J. E. Olive, R. A. Collins, “A long-range pseudoknot is required for activity of the Neurospora VS ribozyme”, The EMBO journal, 15:11 (1996), 2820 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1002/j.1460-2075.1996.tb00642.x'>http://dx.doi.org/10.1002/j.1460-2075.1996.tb00642.x</ext-link>

[7] A. Ke, K. Zhou, F. Ding, J. H. Cate, J. A. Doudna, “A conformational switch controls hepatitis delta virus ribozyme catalysis”, Nature, 429 (2004), 201–205 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1038/nature02522'>http://dx.doi.org/10.1038/nature02522</ext-link>

[8] P. L. Adams, M. R. Stahley, A. B. Kosek, J. Wang, S. A. Strobel, “Crystal structure of a self-splicing group I intron with both exons”, Nature, 430 (2004), 45–50 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1038/nature02642'>http://dx.doi.org/10.1038/nature02642</ext-link>

[9] C. A. Theimer, C. A. Blois, J. Feigon, “Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function”, Molecular cell, 17:5 (2005), 671–682 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.molcel.2005.01.017'>http://dx.doi.org/10.1016/j.molcel.2005.01.017</ext-link>

[10] A. Condon, B. Davy, B. Rastegari, Sh. Zhao, F. Tarrant, “Classifying RNA pseudoknotted structures”, Theoretical Computer Science, 320:1 (2004), 35–50 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.tcs.2004.03.042'>http://dx.doi.org/10.1016/j.tcs.2004.03.042</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2060182'>2060182</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1043.92008'>1043.92008</ext-link>

[11] M. Zuker, “Mfold web server for nucleic acid folding and hybridization prediction”, Nucleic acids research, 31:13 (2003), 3406–3415 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1093/nar/gkg595'>http://dx.doi.org/10.1093/nar/gkg595</ext-link>

[12] J. Reeder, M. Hochsmann, M. Rehmsmeier, B. Voss, R. Giegerich, “Beyond Mfold: recent advances in RNA bioinformatics”, Journal of biotechnology, 124:1 (2006), 41–55 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.jbiotec.2006.01.034'>http://dx.doi.org/10.1016/j.jbiotec.2006.01.034</ext-link>

[13] E. Rivas, S. R. Eddy, “A dynamic programming algorithm for RNA structure prediction including pseudoknots”, Journal of molecular biology, 285:5 (1999), 2053–2068 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1006/jmbi.1998.2436'>http://dx.doi.org/10.1006/jmbi.1998.2436</ext-link>

[14] R. B. Lyngsø, C. N.S. Pedersen, “Pseudoknots in RNA secondary structures”, Proceedings of the fourth annual international conference on Computational molecular biology, ACM, 2000, 201–209 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1145/332306.332551'>http://dx.doi.org/10.1145/332306.332551</ext-link>

[15] R. B. Lyngsø, C. N. S. Pedersen, “RNA pseudoknot prediction in energy-based models”, Journal of computational biology, 7:3–4 (2000), 409–427 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1089/106652700750050862'>http://dx.doi.org/10.1089/106652700750050862</ext-link>

[16] Z. Tan, W. Zhang, Ya. Shi, F. Wang, “RNA folding: structure prediction, folding kinetics and ion electrostatics”, Advance in Structural Bioinformatics, Springer Netherlands, 2015, 143–183 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1007/978-94-017-9245-5_11'>http://dx.doi.org/10.1007/978-94-017-9245-5_11</ext-link>

[17] T. Xia, J. Jr. SantaLucia, M. E. Burkard, R. Kierzek, S. J. Schroeder, X. Jiao, Ch. Cox, D. H. Turner, “Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick base pairs”, Biochemistry, 37:42 (1998), 14719–14735 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1021/bi9809425'>http://dx.doi.org/10.1021/bi9809425</ext-link>

[18] D. H. Mathews, J. Sabina, M. Zuker, D. H. Turner, “Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure”, Journal of molecular biology, 288:5 (1999), 911–940 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1006/jmbi.1999.2700'>http://dx.doi.org/10.1006/jmbi.1999.2700</ext-link>

[19] E. Baulin, V. Yacovlev, D. Khachko, S. Spirin, M. Roytberg, “URS DataBase: universe of RNA structures and their motifs”, Database, 2016 (2016), baw085 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1093/database/baw085'>http://dx.doi.org/10.1093/database/baw085</ext-link>

[20] M. Zuker, D. H. Mathews, D. H. Turner, “Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide”, RNA biochemistry and biotechnology, Springer Netherlands, 1999, 11–43 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1007/978-94-011-4485-8_2'>http://dx.doi.org/10.1007/978-94-011-4485-8_2</ext-link>

[21] J. E. Andersen, R. C. Penner, C. M. Reidys, M. S. Waterman, “Topological classification and enumeration of RNA structures by genus”, Journal of mathematical biology., 67:5 (2013), 1261–1278 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1007/s00285-012-0594-x'>http://dx.doi.org/10.1007/s00285-012-0594-x</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3111990'>3111990</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1335.92068'>1335.92068</ext-link>

[22] M. Bon, G. Vernizzi, H. Orl, A. Zee, “Topological classification of RNA structures”, Journal of molecular biology, 379:4 (2008), 900–911 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.jmb.2008.04.033'>http://dx.doi.org/10.1016/j.jmb.2008.04.033</ext-link>

[23] E. A. Rødland, “Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence”, Journal of Computational Biology, 13:6 (2006), 1197–1213 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1089/cmb.2006.13.1197'>http://dx.doi.org/10.1089/cmb.2006.13.1197</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2257144'>2257144</ext-link>

[24] C. M. Reidys, F. W. D. Huang, J. E. Andersen, R. C. Penner, P. F. Stadler, M. E. Nebel, “Topology and prediction of RNA pseudoknots”, Bioinformatics, 27:8 (2011), 1076–1085 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1093/bioinformatics/btr090'>http://dx.doi.org/10.1093/bioinformatics/btr090</ext-link>

[25] J. K. H. Chiu, Y. P. P. Chen, “Conformational features of topologically classified RNA secondary structures”, PloS one, 7:7 (2012), e39907 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1371/journal.pone.0039907'>http://dx.doi.org/10.1371/journal.pone.0039907</ext-link>

[26] H. M. Berman, J. Westbrook, Z. Feng, G. Gillil, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, “The protein data bank”, Nucleic acids research, 28:1 (2000), 235–242 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1093/nar/28.1.235'>http://dx.doi.org/10.1093/nar/28.1.235</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1409770'>1409770</ext-link>

[27] N. B. Leontis, C. L. Zirbel, “Nonredundant 3D structure datasets for RNA knowledge extraction and benchmarking”, RNA 3D structure analysis and prediction, Springer, Berlin–Heidelberg, 2012, 281–298 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1007/978-3-642-25740-7_13'>http://dx.doi.org/10.1007/978-3-642-25740-7_13</ext-link>