Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_a2, author = {E. F. Baulin and A. V. Korinevskaya and P. O. Tikhonova and M. A. Roitberg}, title = {Diverse {RNA} pseudoknots exist for short stems only}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t37--t43}, publisher = {mathdoc}, volume = {14}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_a2/} }
TY - JOUR AU - E. F. Baulin AU - A. V. Korinevskaya AU - P. O. Tikhonova AU - M. A. Roitberg TI - Diverse RNA pseudoknots exist for short stems only JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - t37 EP - t43 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_a2/ LA - en ID - MBB_2019_14_a2 ER -
%0 Journal Article %A E. F. Baulin %A A. V. Korinevskaya %A P. O. Tikhonova %A M. A. Roitberg %T Diverse RNA pseudoknots exist for short stems only %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P t37-t43 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_a2/ %G en %F MBB_2019_14_a2
E. F. Baulin; A. V. Korinevskaya; P. O. Tikhonova; M. A. Roitberg. Diverse RNA pseudoknots exist for short stems only. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019), pp. t37-t43. http://geodesic.mathdoc.fr/item/MBB_2019_14_a2/
[1] W. B. Marzluff, “Twenty years of RNA: reflections on post-transcriptional regulation”, RNA (New York, NY), 21:4 (2015), 687–689 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1261/rna.050997.115'>http://dx.doi.org/10.1261/rna.050997.115</ext-link>
[2] A. M. Eiring, J. G. Harb, P. Neviani, Ch. Garton, J. J. Oaks, R. Spizzo, Sh. Liu, S. Schwind, R. Santhanam, Ch. J. Hickey et al., “miR-328 Functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts”, Cell, 140:5 (2010), 652–665 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.cell.2010.01.007'>http://dx.doi.org/10.1016/j.cell.2010.01.007</ext-link>
[3] D. P. Bartel, “MicroRNAs: target recognition and regulatory functions”, Cell, 136:2 (2009), 215–233 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.cell.2009.01.002'>http://dx.doi.org/10.1016/j.cell.2009.01.002</ext-link>
[4] P. Kapranov, J. Cheng, S. Dike, D. A. Nix, R. Duttagupta, A. T. Willingham, P. F. Stadler, J. Hertel, J. Hackermuller, I. L. Hofacker et al., “RNA maps reveal new RNA classes and a possible function for pervasive transcription”, Science, 316:5830 (2007), 1484–1488 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1126/science.1138341'>http://dx.doi.org/10.1126/science.1138341</ext-link>
[5] B. A. Shapiro, Ya. G. Yingling, W. Kasprzak, E. Bindewald, “Bridging the gap in RNA structure prediction”, Current opinion in structural biology, 17:2 (2007), 157–165 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.sbi.2007.03.001'>http://dx.doi.org/10.1016/j.sbi.2007.03.001</ext-link>
[6] T. Rastogi, T. L. Beattie, J. E. Olive, R. A. Collins, “A long-range pseudoknot is required for activity of the Neurospora VS ribozyme”, The EMBO journal, 15:11 (1996), 2820 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1002/j.1460-2075.1996.tb00642.x'>http://dx.doi.org/10.1002/j.1460-2075.1996.tb00642.x</ext-link>
[7] A. Ke, K. Zhou, F. Ding, J. H. Cate, J. A. Doudna, “A conformational switch controls hepatitis delta virus ribozyme catalysis”, Nature, 429 (2004), 201–205 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1038/nature02522'>http://dx.doi.org/10.1038/nature02522</ext-link>
[8] P. L. Adams, M. R. Stahley, A. B. Kosek, J. Wang, S. A. Strobel, “Crystal structure of a self-splicing group I intron with both exons”, Nature, 430 (2004), 45–50 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1038/nature02642'>http://dx.doi.org/10.1038/nature02642</ext-link>
[9] C. A. Theimer, C. A. Blois, J. Feigon, “Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function”, Molecular cell, 17:5 (2005), 671–682 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.molcel.2005.01.017'>http://dx.doi.org/10.1016/j.molcel.2005.01.017</ext-link>
[10] A. Condon, B. Davy, B. Rastegari, Sh. Zhao, F. Tarrant, “Classifying RNA pseudoknotted structures”, Theoretical Computer Science, 320:1 (2004), 35–50 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.tcs.2004.03.042'>http://dx.doi.org/10.1016/j.tcs.2004.03.042</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2060182'>2060182</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1043.92008'>1043.92008</ext-link>
[11] M. Zuker, “Mfold web server for nucleic acid folding and hybridization prediction”, Nucleic acids research, 31:13 (2003), 3406–3415 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1093/nar/gkg595'>http://dx.doi.org/10.1093/nar/gkg595</ext-link>
[12] J. Reeder, M. Hochsmann, M. Rehmsmeier, B. Voss, R. Giegerich, “Beyond Mfold: recent advances in RNA bioinformatics”, Journal of biotechnology, 124:1 (2006), 41–55 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.jbiotec.2006.01.034'>http://dx.doi.org/10.1016/j.jbiotec.2006.01.034</ext-link>
[13] E. Rivas, S. R. Eddy, “A dynamic programming algorithm for RNA structure prediction including pseudoknots”, Journal of molecular biology, 285:5 (1999), 2053–2068 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1006/jmbi.1998.2436'>http://dx.doi.org/10.1006/jmbi.1998.2436</ext-link>
[14] R. B. Lyngsø, C. N.S. Pedersen, “Pseudoknots in RNA secondary structures”, Proceedings of the fourth annual international conference on Computational molecular biology, ACM, 2000, 201–209 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1145/332306.332551'>http://dx.doi.org/10.1145/332306.332551</ext-link>
[15] R. B. Lyngsø, C. N. S. Pedersen, “RNA pseudoknot prediction in energy-based models”, Journal of computational biology, 7:3–4 (2000), 409–427 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1089/106652700750050862'>http://dx.doi.org/10.1089/106652700750050862</ext-link>
[16] Z. Tan, W. Zhang, Ya. Shi, F. Wang, “RNA folding: structure prediction, folding kinetics and ion electrostatics”, Advance in Structural Bioinformatics, Springer Netherlands, 2015, 143–183 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1007/978-94-017-9245-5_11'>http://dx.doi.org/10.1007/978-94-017-9245-5_11</ext-link>
[17] T. Xia, J. Jr. SantaLucia, M. E. Burkard, R. Kierzek, S. J. Schroeder, X. Jiao, Ch. Cox, D. H. Turner, “Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick base pairs”, Biochemistry, 37:42 (1998), 14719–14735 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1021/bi9809425'>http://dx.doi.org/10.1021/bi9809425</ext-link>
[18] D. H. Mathews, J. Sabina, M. Zuker, D. H. Turner, “Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure”, Journal of molecular biology, 288:5 (1999), 911–940 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1006/jmbi.1999.2700'>http://dx.doi.org/10.1006/jmbi.1999.2700</ext-link>
[19] E. Baulin, V. Yacovlev, D. Khachko, S. Spirin, M. Roytberg, “URS DataBase: universe of RNA structures and their motifs”, Database, 2016 (2016), baw085 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1093/database/baw085'>http://dx.doi.org/10.1093/database/baw085</ext-link>
[20] M. Zuker, D. H. Mathews, D. H. Turner, “Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide”, RNA biochemistry and biotechnology, Springer Netherlands, 1999, 11–43 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1007/978-94-011-4485-8_2'>http://dx.doi.org/10.1007/978-94-011-4485-8_2</ext-link>
[21] J. E. Andersen, R. C. Penner, C. M. Reidys, M. S. Waterman, “Topological classification and enumeration of RNA structures by genus”, Journal of mathematical biology., 67:5 (2013), 1261–1278 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1007/s00285-012-0594-x'>http://dx.doi.org/10.1007/s00285-012-0594-x</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3111990'>3111990</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1335.92068'>1335.92068</ext-link>
[22] M. Bon, G. Vernizzi, H. Orl, A. Zee, “Topological classification of RNA structures”, Journal of molecular biology, 379:4 (2008), 900–911 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.jmb.2008.04.033'>http://dx.doi.org/10.1016/j.jmb.2008.04.033</ext-link>
[23] E. A. Rødland, “Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence”, Journal of Computational Biology, 13:6 (2006), 1197–1213 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1089/cmb.2006.13.1197'>http://dx.doi.org/10.1089/cmb.2006.13.1197</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2257144'>2257144</ext-link>
[24] C. M. Reidys, F. W. D. Huang, J. E. Andersen, R. C. Penner, P. F. Stadler, M. E. Nebel, “Topology and prediction of RNA pseudoknots”, Bioinformatics, 27:8 (2011), 1076–1085 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1093/bioinformatics/btr090'>http://dx.doi.org/10.1093/bioinformatics/btr090</ext-link>
[25] J. K. H. Chiu, Y. P. P. Chen, “Conformational features of topologically classified RNA secondary structures”, PloS one, 7:7 (2012), e39907 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1371/journal.pone.0039907'>http://dx.doi.org/10.1371/journal.pone.0039907</ext-link>
[26] H. M. Berman, J. Westbrook, Z. Feng, G. Gillil, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, “The protein data bank”, Nucleic acids research, 28:1 (2000), 235–242 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1093/nar/28.1.235'>http://dx.doi.org/10.1093/nar/28.1.235</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1409770'>1409770</ext-link>
[27] N. B. Leontis, C. L. Zirbel, “Nonredundant 3D structure datasets for RNA knowledge extraction and benchmarking”, RNA 3D structure analysis and prediction, Springer, Berlin–Heidelberg, 2012, 281–298 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1007/978-3-642-25740-7_13'>http://dx.doi.org/10.1007/978-3-642-25740-7_13</ext-link>