The study of interhelical angles in the structural motifs formed by two helices
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019), pp. t1-t17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a statistical analysis of distributions of inter-helical angles in pairs of consequtive and connected $\alpha$-helices in spatial structures of proteins are presented. A number of rules for selection of the helical pairs from a set of protein structures obtained from Protein Data Bank (PDB) are developed. The set of helical pairs has been analyzed for the purpose of classification and finding out the features of protein structural organization. All the pairs of connected helices are divided into three subsets according to the criterion of crossing of projections of the helices on parallel planes, which pass through the axes of the helices. It is shown that the distribution of all the types of helical pairs, whose projections do not cross each other, covers almost the entire range of inter-helical angles. The distribution has a single minimum which is close to right angle. Most pairs in this set constitute helical pairs consisting of $\alpha$- and 3$_{10}$-helices, and most pairs with the crossing projections of helices are helical pairs formed by two $\alpha$-helices. It is also shown that a great amount of the pairs of connected $\alpha$-helices has acute angle ($20^\circ \leqslant\varphi \leqslant 60^\circ$) between the axes of the helices. The distribution of all the types of helical pairs depending on the length of the inter-helical connections is also analyzed. It is shown that the structures with short connections occur most often in all the subsets.
@article{MBB_2019_14_a0,
     author = {D. A. Tikhonov and L. I. Kulikova and A. V. Efimov},
     title = {The study of interhelical angles in the structural motifs formed by two helices},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t1--t17},
     publisher = {mathdoc},
     volume = {14},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_a0/}
}
TY  - JOUR
AU  - D. A. Tikhonov
AU  - L. I. Kulikova
AU  - A. V. Efimov
TI  - The study of interhelical angles in the structural motifs formed by two helices
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - t1
EP  - t17
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_a0/
LA  - en
ID  - MBB_2019_14_a0
ER  - 
%0 Journal Article
%A D. A. Tikhonov
%A L. I. Kulikova
%A A. V. Efimov
%T The study of interhelical angles in the structural motifs formed by two helices
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P t1-t17
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_a0/
%G en
%F MBB_2019_14_a0
D. A. Tikhonov; L. I. Kulikova; A. V. Efimov. The study of interhelical angles in the structural motifs formed by two helices. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019), pp. t1-t17. http://geodesic.mathdoc.fr/item/MBB_2019_14_a0/

[1] Efimov A. V., “Standard structures in proteins”, Prog. Biophys. Molec. Biol., 60 (1993), 201–239 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0079-6107(93)90015-C'>10.1016/0079-6107(93)90015-C</ext-link>

[2] Gordeev A. B., Kargatov A. M., Efimov A. V., “PCBOST: Protein classification based on structural trees”, Biochemical and Biophysical Research Communications, 397 (2010), 470–471 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.bbrc.2010.05.136'>10.1016/j.bbrc.2010.05.136</ext-link>

[3] Efimov A. V., “Super-secondary structures and modeling of protein folds”, Methods in Molecular Biology, 932, ed. Kister A. E., Humana Press, Clifton, 2013, 177–189 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-1-62703-065-6_11'>10.1007/978-1-62703-065-6_11</ext-link>

[4] Brazhnikov E. V., Efimov A. V., “Structure of $\alpha$-$\alpha$-hairpins with short connections in globular proteins”, Molecular Biology, 35:1 (2001), 89–97 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1004859003221'>10.1023/A:1004859003221</ext-link>

[5] V. R. Rudnev, A. N. Pankratov, L. I. Kulikova, F. F. Dedus, D. A. Tikhonov, A. V. Efimov, “Recognition and Stability Analysis of Structural Motifs of $\alpha$-$\alpha$-corner Type in Globular Proteins”, Mathematical Biology and Bioinformatics, 8:2 (2013), 398–406 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17537/2013.8.398'>http://dx.doi.org/10.17537/2013.8.398</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2438291'>2438291</ext-link>

[6] V. R. Rudnev, A. N. Pankratov, L. I. Kulikova, F. F. Dedus, D. A. Tikhonov, A. V. Efimov, “Conformational Analysis of Structural Motifs of $\alpha$-$\alpha$-Corner in the Computational Experiment of Molecular Dynamics”, Mathematical Biology and Bioinformatics, 9:2 (2014), 575–584 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17537/2014.9.575'>http://dx.doi.org/10.17537/2014.9.575</ext-link>

[7] Dedus F. F., Makhortykh S. A., Ustinin M. N., Dedus A. F., Generalized Spectral-Analytic Method in Information Processing. Problems of Pattern Recognition and Image Analysis, M., 1999, 357 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3544788'>3544788</ext-link>

[8] Dedus F. F., Makhortykh S. A., Ustinin M. N., “Application of the Generalized Spectral-Analytic Method in Information Problems”, Pattern Recognition and Image Analysis, 12:4 (2002), 429–437

[9] Pankratov A.N., Tetuev R.K., Pyatkov M.I., Toigildin V.P., Popova N.N., “Spectral Analytical Method of Recognition of Inexact Repeats in Character Sequences”, Proceedings of the Institute for System Programming of the RAS, 27:6 (2015), 335–344 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.15514/ISPRAS-2015-27(6)-21'>10.15514/ISPRAS-2015-27(6)-21</ext-link>

[10] Finkelstein A. V., Physics of Protein Molecules, M.–Izhevsk, 2014, 424 pp. (in Russ.)

[11] Ptitsyn O. B., Finkelstein A. V., Results in Science and Technology. Ser. Molecular Bilogy, 15, ed. Vol'kenshtein M. D., M., 1979, 6–41 (in Russ.)

[12] Schulz G. E., Schirmer R. H., Principles of Protein Structure, Springer Advanced Texts in Chemistry, Springer-Verlag, New York, 1979 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-1-4612-6137-7'>10.1007/978-1-4612-6137-7</ext-link>

[13] Miller S., Janin J., Lesk A. M., Chothia C., “Interior and surfage of monomeric proteins”, Molecular Biology, 196 (1987), 641–656 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-2836(87)90038-6'>10.1016/0022-2836(87)90038-6</ext-link>

[14] Creighton T. E., Proteins, W.H. Freeman & Co, N.Y., 1991

[15] Stepanov V. M., Molecular biology. The structure and function of proteins, M., 336 pp. (in Russ.)

[16] Tsai F. C., Sherman J. C., “Circular dichroism analysis of a synthetic peptide corresponding to the $\alpha$-$\alpha$-corner motif of hemoglobin”, Biochemical and Biophysical Research Communications, 196:1 (1993), 435–439 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/bbrc.1993.2268'>10.1006/bbrc.1993.2268</ext-link>

[17] Tikhonov D. A., Kulikova L. I., Efimov A. V., “Statistical Analysis of the Internal Distances of Helical Pairs in Protein Molecules”, Mathematical Biology and Bioinformatics, 11:2 (2016), 170–190 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17537/2016.11.170'>http://dx.doi.org/10.17537/2016.11.170</ext-link>

[18] Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E., “The Protein Data Bank”, Nucleic Acids Research, 28 (2000), 235–242 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/28.1.235'>10.1093/nar/28.1.235</ext-link>

[19] Crick F. H. C., “The Packing of a-Helices: Simple Coiled-Coils”, Acta Crystallographica, 6 (1953), 689–697 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0365110X53001964'>10.1107/S0365110X53001964</ext-link>

[20] Lee H. S., Choi J., Yoon S., “QHELIX: A Computational Tool for the Improved Measurement of Inter-Helical Angles in Proteins”, Protein, 26 (2007), 556–561 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1007/s10930-007-9097-9'>http://dx.doi.org/10.1007/s10930-007-9097-9</ext-link>

[21] Walther D., Eisenhaber F., Argos P., “Principles of Helix-Helix Packing in Proteins: The Helical Lattice Superposition Model”, Molecular Biology, 255 (1996), 536–553 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jmbi.1996.0044'>10.1006/jmbi.1996.0044</ext-link>

[22] Chothia C., Levitt M., Richardson D., “Structure of proteins: Packing of $\alpha$-helices and pleated sheets”, Proc. Natl. Acad. Sci., 74 (1977), 4130–4134 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.74.10.4130'>10.1073/pnas.74.10.4130</ext-link>

[23] Chothia C., Levitt M., Richardson D., “Helix to Helix Packing in Proteins”, Molecular Biology, 145 (1981), 215–250 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-2836(81)90341-7'>10.1016/0022-2836(81)90341-7</ext-link>

[24] Levitt M., Chothia C., “Structural patterns in globular proteins”, Nature, 261 (1976), 552–558 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/261552a0'>10.1038/261552a0</ext-link>

[25] Kabsch W., Sander C., “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features”, Biopolymers, 22:12 (1983), 2577–2637 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/bip.360221211'>10.1002/bip.360221211</ext-link>

[26] Kabsch W., “A solution for the best rotation to relate two sets of vectors”, Acta Crystallographica, 32 (1976), 922–923 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0567739476001873'>10.1107/S0567739476001873</ext-link>

[27] Kabsch W., “A discussion of the solution for the best rotation to relate two sets of vectors”, Acta Crystallographica, 34 (1978), 827–828 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0567739478001680'>10.1107/S0567739478001680</ext-link>

[28] Legland D., MatGeom: Matlab geometry toolbox for 2D/3D geometric computing, (accessed: 11.09.2018) <ext-link ext-link-type='uri' href='http://github.com/dlegland/matGeom'>http://github.com/dlegland/matGeom</ext-link>