Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_3_a1, author = {D. A. Tikhonov and L. I. Kulikova and A. V. Efimov}, title = {Statistical analysis of internal distances of helical pairs in protein molecules}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t18--t36}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_3_a1/} }
TY - JOUR AU - D. A. Tikhonov AU - L. I. Kulikova AU - A. V. Efimov TI - Statistical analysis of internal distances of helical pairs in protein molecules JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - t18 EP - t36 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_3_a1/ LA - en ID - MBB_2019_14_3_a1 ER -
%0 Journal Article %A D. A. Tikhonov %A L. I. Kulikova %A A. V. Efimov %T Statistical analysis of internal distances of helical pairs in protein molecules %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P t18-t36 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_3_a1/ %G en %F MBB_2019_14_3_a1
D. A. Tikhonov; L. I. Kulikova; A. V. Efimov. Statistical analysis of internal distances of helical pairs in protein molecules. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 3, pp. t18-t36. http://geodesic.mathdoc.fr/item/MBB_2019_14_3_a1/
[1] A. V. Efimov, “Standard structures in proteins”, Prog. Biophys. Molec. Biol, 60 (1993), 201–239 | DOI | DOI
[2] A. B. Gordeev, A. M. Kargatov, A. V. Efimov, “PCBOST: Protein classification based on structural trees”, Biochemical and Biophysical Research Communications, 397 (2010), 470–471 | DOI | DOI
[3] A. V. Efimov, “Super-secondary structures and modeling of protein folds”, Methods in Molecular Biology, 932, ed. A. E. Kister, Humana Press, Clifton, 2013, 177–189 | DOI | DOI
[4] E. V. Brazhnikov, A. V. Efimov, “Structure of $\alpha$-$\alpha$-hairpins with short connections in globular proteins”, Molecular Biology, 35:1 (2001), 89–97 | DOI | DOI
[5] A. V. Efimov, “L-shaped structure from two-helices with a proline residue between them”, Mol. Biol. (Moscow), 26 (1992), 1370–1376 (in Russ.)
[6] A. V. Efimov, “A new super-secondary protein structure: the $\alpha$-$\alpha$-angle”, Mol. Biol. (Moscow), 18 (1984), 1524–1537 (in Russ.)
[7] A. V. Finkelstein, Physics of Protein Molecules, M.–Izhevsk, 2014, 424 pp. (in Russ.)
[8] O. B. Ptitsyn, A. V. Finkelstein, Results in Science and Technology. Series «Molecular Bilogy», 15, ed. Vol'kenshtein M. D., M., 1979, 6–41 (in Russ.)
[9] Schulz G. E., Schirmer R. H., Principles of Protein Structure, Springer Advanced Texts in Chemistry, Springer-Verlag, New York, 1979, 354 pp. | DOI | DOI
[10] S. Miller, J. Janin, A. M. Lesk, C. Chothia, “Interior and surfage of monomeric proteins”, J. Molecular Biology, 196 (1987), 641–656 | DOI | DOI
[11] T. E. Creighton, Proteins, 2-nd edn, W.H. Freeman Co, N.Y., 1991
[12] V. M. Stepanov, Molecular biology. The structure and function of proteins, M., 1996, 336 pp. (in Russ.)
[13] A. V. Finkelstein, Mol. Biol., 11, M., 1970, 811–819 (in Russ.)
[14] A. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, W.H. Freeman Co, N.Y., 1999
[15] V. I. Lim, “Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure”, J. Molecular Biology, 88 (1974), 857–872 | DOI | DOI
[16] V. I. Lim, “Algorithm for prediction of $\alpha$-helices and $\beta$-structural regions in globular proteins”, J. Molecular Biology, 88 (1974), 873–894 | DOI | DOI
[17] R. K. Wierenga, P. Terpstra, W. G. S. Hol, “Prediction of the occurrence of the ADP-binding $\beta\alpha\beta$-fold in proteins, using an amino acid sequence fingerprint”, J. Molecular Biology, 187 (1986), 101–107 | DOI | DOI
[18] V. R. Rudnev, A. N. Pankratov, L. I. Kulikova, F. F. Dedus, D. A. Tikhonov, A. V. Efimov, “Recognition and stability analysis of structural motifs of $\alpha$-$\alpha$-corner type in globular proteins”, Mathematical Biology and Bioinformatics, 8:2 (2013), 398–406 (in Russ.) | DOI | MR | DOI | MR
[19] V. R. Rudnev, A. N. Pankratov, L. I. Kulikova, F. F. Dedus, D. A. Tikhonov, A. V. Efimov, “Conformational analysis of structural motifs of $\alpha$-$\alpha$-corner in the computational experiment of molecular dynamics”, Mathematical Biology and Bioinformatics, 9:2 (2014), 575–584 (in Russ.) | DOI | DOI
[20] F. F. Dedus, L. I. Kulikova, A. N. Pankratov, R. L. Tetouev, Classical Orthogonal Bases in Problems of Analytical Description of Information Signals and Their Processing, M., 2004, 147 pp. (in Russ.)
[21] A. N. Pankratov, M. A. Gorchakov, F. F. Dedus, N. S. Dolotova, L. I. Kulikova, S. A. Makhortykh, N. N. Nazipova, D. A. Novikova, M. M. Olshevets, M. I. Pyatkov, V. R. Rudnev, R. K. Tetuev, V. V. Filippov, “Spectral Analysis for identification and visualization of repeats in genetic sequences”, Pattern Recognition and Image Analysis, 19:4 (2009), 687–692 | DOI | DOI
[22] F. C. Tsai, J. C. Sherman, “Circular dichroism analysis of a synthetic peptide corresponding to the $\alpha$,$\alpha$-corner motif of hemoglobin”, Biochemical and Biophysical Research Communications, 196:1 (1993), 435–439 | DOI | DOI
[23] W. Kabsch, C. Sander, “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features”, Biopolymers, 22:12 (1983), 2577–2637 | DOI | DOI
[24] W. Kabsch, “A solution for the best rotation to relate two sets of vectors”, Acta Crystallographica, 32 (1976), 922–923 | DOI | DOI
[25] W. Kabsch, “A discussion of the solution for the best rotation to relate two sets of vectors”, Acta Crystallographica, 34 (1978), 827–828 | DOI | DOI
[26] D. Legland, MatGeom: Matlab geometry toolbox for 2D/3D geometric computing, (accessed 11 March 2016) http://github.com/dlegland/matGeom
[27] P. W. Holland, R. E. Welsch, “Robust regression using iteratively reweighted leastsquares”, Communications in Statistic Theory and Methods, 6:9 (1977), 813–827 | DOI | DOI