Statistical analysis of internal distances of helical pairs in protein molecules
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 3, pp. t18-t36

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a statistical analysis of a distribution of interhelical distances in the helical pairs of known proteins is carried out. A set of helical pairs of the protein molecules which was selected from the Protein Data Bank according to certain rules was subdivided into three subsets according to the criterion of crossing helix projections onto parallel planes passing through the helical axes. It is shown that the distributions of the distances for the helical pairs not having crossing projections have more long-range character than those whose projections cross. Using regression analysis we analyze the character of distributions, in particular, we show that in the subsets which do not have crossing projections, distributions of different distances between helical axes are gamma distributions. It is demonstrated that in the subsets having crossing projections, the ratio between the minimum distance and the interplane one is likely to be small as distinct from the subset not having crossing projections where the opposite is the case. The conclusion is proved that helical pairs having crossing axes projections are additionally stabilized due to internal interactions.
@article{MBB_2019_14_3_a1,
     author = {D. A. Tikhonov and L. I. Kulikova and A. V. Efimov},
     title = {Statistical analysis of internal distances of helical pairs in protein molecules},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t18--t36},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_3_a1/}
}
TY  - JOUR
AU  - D. A. Tikhonov
AU  - L. I. Kulikova
AU  - A. V. Efimov
TI  - Statistical analysis of internal distances of helical pairs in protein molecules
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - t18
EP  - t36
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_3_a1/
LA  - en
ID  - MBB_2019_14_3_a1
ER  - 
%0 Journal Article
%A D. A. Tikhonov
%A L. I. Kulikova
%A A. V. Efimov
%T Statistical analysis of internal distances of helical pairs in protein molecules
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P t18-t36
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_3_a1/
%G en
%F MBB_2019_14_3_a1
D. A. Tikhonov; L. I. Kulikova; A. V. Efimov. Statistical analysis of internal distances of helical pairs in protein molecules. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 3, pp. t18-t36. http://geodesic.mathdoc.fr/item/MBB_2019_14_3_a1/

[1] A. V. Efimov, “Standard structures in proteins”, Prog. Biophys. Molec. Biol, 60 (1993), 201–239 | DOI | DOI

[2] A. B. Gordeev, A. M. Kargatov, A. V. Efimov, “PCBOST: Protein classification based on structural trees”, Biochemical and Biophysical Research Communications, 397 (2010), 470–471 | DOI | DOI

[3] A. V. Efimov, “Super-secondary structures and modeling of protein folds”, Methods in Molecular Biology, 932, ed. A. E. Kister, Humana Press, Clifton, 2013, 177–189 | DOI | DOI

[4] E. V. Brazhnikov, A. V. Efimov, “Structure of $\alpha$-$\alpha$-hairpins with short connections in globular proteins”, Molecular Biology, 35:1 (2001), 89–97 | DOI | DOI

[5] A. V. Efimov, “L-shaped structure from two-helices with a proline residue between them”, Mol. Biol. (Moscow), 26 (1992), 1370–1376 (in Russ.)

[6] A. V. Efimov, “A new super-secondary protein structure: the $\alpha$-$\alpha$-angle”, Mol. Biol. (Moscow), 18 (1984), 1524–1537 (in Russ.)

[7] A. V. Finkelstein, Physics of Protein Molecules, M.–Izhevsk, 2014, 424 pp. (in Russ.)

[8] O. B. Ptitsyn, A. V. Finkelstein, Results in Science and Technology. Series «Molecular Bilogy», 15, ed. Vol'kenshtein M. D., M., 1979, 6–41 (in Russ.)

[9] Schulz G. E., Schirmer R. H., Principles of Protein Structure, Springer Advanced Texts in Chemistry, Springer-Verlag, New York, 1979, 354 pp. | DOI | DOI

[10] S. Miller, J. Janin, A. M. Lesk, C. Chothia, “Interior and surfage of monomeric proteins”, J. Molecular Biology, 196 (1987), 641–656 | DOI | DOI

[11] T. E. Creighton, Proteins, 2-nd edn, W.H. Freeman Co, N.Y., 1991

[12] V. M. Stepanov, Molecular biology. The structure and function of proteins, M., 1996, 336 pp. (in Russ.)

[13] A. V. Finkelstein, Mol. Biol., 11, M., 1970, 811–819 (in Russ.)

[14] A. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, W.H. Freeman Co, N.Y., 1999

[15] V. I. Lim, “Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure”, J. Molecular Biology, 88 (1974), 857–872 | DOI | DOI

[16] V. I. Lim, “Algorithm for prediction of $\alpha$-helices and $\beta$-structural regions in globular proteins”, J. Molecular Biology, 88 (1974), 873–894 | DOI | DOI

[17] R. K. Wierenga, P. Terpstra, W. G. S. Hol, “Prediction of the occurrence of the ADP-binding $\beta\alpha\beta$-fold in proteins, using an amino acid sequence fingerprint”, J. Molecular Biology, 187 (1986), 101–107 | DOI | DOI

[18] V. R. Rudnev, A. N. Pankratov, L. I. Kulikova, F. F. Dedus, D. A. Tikhonov, A. V. Efimov, “Recognition and stability analysis of structural motifs of $\alpha$-$\alpha$-corner type in globular proteins”, Mathematical Biology and Bioinformatics, 8:2 (2013), 398–406 (in Russ.) | DOI | MR | DOI | MR

[19] V. R. Rudnev, A. N. Pankratov, L. I. Kulikova, F. F. Dedus, D. A. Tikhonov, A. V. Efimov, “Conformational analysis of structural motifs of $\alpha$-$\alpha$-corner in the computational experiment of molecular dynamics”, Mathematical Biology and Bioinformatics, 9:2 (2014), 575–584 (in Russ.) | DOI | DOI

[20] F. F. Dedus, L. I. Kulikova, A. N. Pankratov, R. L. Tetouev, Classical Orthogonal Bases in Problems of Analytical Description of Information Signals and Their Processing, M., 2004, 147 pp. (in Russ.)

[21] A. N. Pankratov, M. A. Gorchakov, F. F. Dedus, N. S. Dolotova, L. I. Kulikova, S. A. Makhortykh, N. N. Nazipova, D. A. Novikova, M. M. Olshevets, M. I. Pyatkov, V. R. Rudnev, R. K. Tetuev, V. V. Filippov, “Spectral Analysis for identification and visualization of repeats in genetic sequences”, Pattern Recognition and Image Analysis, 19:4 (2009), 687–692 | DOI | DOI

[22] F. C. Tsai, J. C. Sherman, “Circular dichroism analysis of a synthetic peptide corresponding to the $\alpha$,$\alpha$-corner motif of hemoglobin”, Biochemical and Biophysical Research Communications, 196:1 (1993), 435–439 | DOI | DOI

[23] W. Kabsch, C. Sander, “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features”, Biopolymers, 22:12 (1983), 2577–2637 | DOI | DOI

[24] W. Kabsch, “A solution for the best rotation to relate two sets of vectors”, Acta Crystallographica, 32 (1976), 922–923 | DOI | DOI

[25] W. Kabsch, “A discussion of the solution for the best rotation to relate two sets of vectors”, Acta Crystallographica, 34 (1978), 827–828 | DOI | DOI

[26] D. Legland, MatGeom: Matlab geometry toolbox for 2D/3D geometric computing, (accessed 11 March 2016) http://github.com/dlegland/matGeom

[27] P. W. Holland, R. E. Welsch, “Robust regression using iteratively reweighted leastsquares”, Communications in Statistic Theory and Methods, 6:9 (1977), 813–827 | DOI | DOI