A modular visual model of energy metabolism in human skeletal muscle
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 373-392.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a modification of a multi-compartmental mathematical model describing the dynamics of intracellular species concentrations and fluxes in human muscle at rest. A modular representation of a complex model is proposed, which provides the possibility of rapid expansion and modification of the model compartments to account for the complex organization of muscle cells and the limitations of the rate of diffusion of metabolites between intracellular compartments. To illustrate the work of the model, intracellular response in human skeletal muscle to acute aerobic two-legged cycle ergometer training was considered. The model in SBML format is available at http://wiki.biouml.org/index.php/Muscle-metabolism.
@article{MBB_2019_14_2_a9,
     author = {I. N. Kiselev and I. R. Akberdin and A. Vertyshev and D. V. Popov and F. A. Kolpakov},
     title = {A modular visual model of energy metabolism in human skeletal muscle},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {373--392},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a9/}
}
TY  - JOUR
AU  - I. N. Kiselev
AU  - I. R. Akberdin
AU  - A. Vertyshev
AU  - D. V. Popov
AU  - F. A. Kolpakov
TI  - A modular visual model of energy metabolism in human skeletal muscle
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 373
EP  - 392
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a9/
LA  - ru
ID  - MBB_2019_14_2_a9
ER  - 
%0 Journal Article
%A I. N. Kiselev
%A I. R. Akberdin
%A A. Vertyshev
%A D. V. Popov
%A F. A. Kolpakov
%T A modular visual model of energy metabolism in human skeletal muscle
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 373-392
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a9/
%G ru
%F MBB_2019_14_2_a9
I. N. Kiselev; I. R. Akberdin; A. Vertyshev; D. V. Popov; F. A. Kolpakov. A modular visual model of energy metabolism in human skeletal muscle. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 373-392. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a9/

[1] B. K. Pedersen, M. A. Febbraio, “Muscles, exercise and obesity: skeletal muscle as a secretory organ”, Nature Reviews Endocrinology, 8:8 (2012), 457–465 | DOI

[2] Y. Li, R. K. Dash, J. Kim, G. M. Saidel, M. E. Cabrera, “Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies”, American Journal of Physiology-Cell Physiology, 296:1 (2009), 25–46

[3] I. R. Akberdin, F. V. Kazantsev, T. V. Ermak, V. S. Timonov, T. M. Khlebodarova, V. A. Likhoshvai, “In Silico Cell: Challenges and Perspectives”, Mathematical Biology and Bioinformatics, 8:1 (2013), 295–315 | DOI

[4] B. Korzeniewski, “Regulation of ATP supply during muscle contraction: theoretical studies”, Biochemical Journal, 330:3 (1998), 1189–1195 | DOI

[5] B. Korzeniewski, “Regulation of ATP supply in mammalian skeletal muscle during resting state intensive work transition”, Biophysical Chemistry, 83:1 (2000), 19–34 | DOI

[6] B. Korzeniewski, J. A. Zoladz, “A model of oxidative phosphorylation in mammalian skeletal muscle”, Biophysical Chemistry, 92:1-2 (2001), 17–34 | DOI

[7] M. J. Lambeth, M. J. Kushmerick, “A computational model for glycogenolysis in skeletal muscle”, Ann. Biomed. Eng, 30 (2002), 808–827 | DOI

[8] B. Korzeniewski, P. Liguzinski, “Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle”, Biophysical Chemistry, 110:1-2 (2004), 147–169 | DOI

[9] L. Zhou, J. E. Salem, G. M. Saidel, W. C. Stanley, M. E. Cabrera, “Mechanistic model of cardiac energy metabolism predicts localization of glycolysis to cytosolic subdomain during ischemia”, Am. J. Physiol. Heart Circ. Physiol, 288 (2005), 2400–2411

[10] L. Zhou, W. C. Stanley, G. M. Saidel, X. Yu, M. E. Cabrera, “Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD: insights from in silico studies”, J. Physiol., 569 (2005), 925–937 | DOI

[11] K. C. Vinnakota, M. L. Kemp, M. J. Kushmerick, “Dynamics of muscle glycogenolysis modeled with pH time-course computation and pH dependent reaction equilibria and enzyme kinetics”, Biophys. J., 91 (2006), 1264–1287 | DOI

[12] L. Zhou, M. E. Cabrera, I. C. Okere, N. Sharma, W. C. Stanley, “Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies”, Am. J. Physiol. Heart Circ. Physiol., 291 (2006), 1036–1046

[13] R. K. Dash, J. A. Dibella, M. E. Cabrera, “A computational model of skeletal muscle metabolism linking cellular adaptations induced by altered loading states to metabolic responses during exercise”, Biomed. Eng. Online, 6:1 (2007), 14 | DOI | MR

[14] F. Wu, J. A. L. Jeneson, D. A. Beard, “Oxidative ATP synthesis in skeletal muscle is controlled by substrate feedback”, Am. J. Physiol. Cell Physiol., 292 (2007), 115–124

[15] L. Zhou, M. E. Cabrera, H. Huang, C. Yuan, M. Duda, N. Sharma, F. Bian, W. C. Stanley, “Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation”, J. Physiol., 579 (2007), 811–821 | DOI

[16] Y. Li, N. Lai, J. P. Kirwan, G. M. Saidel, “Computational model of cellular metabolic dynamics in skeletal muscle fibers during moderate intensity exercise”, Cellular and Mol. Bioeng., 5:1 (2012), 92–112 | DOI

[17] C. M. Kummitha, S. C. Kalhan, G. M. Saidel, N. Lai, “Relating tissue/organ energy expenditure to metabolic fluxes in mouse and human: experimental data integrated with mathematical modeling”, Physiol. Rep., 2:9 (2014) | DOI

[18] J. L. Snoep, F. Bruggeman, B. G. Westerhoff, H. V. Olivier, “Towards building the silicon cell: a modular approach”, Biosystems, 83 (2006), 207–216 | DOI

[19] M. T. Cooling, V. Rouilly, G. Misirli, T. Lawson Ju, J. Halinan, A. Wipat, “Standard virtual biological parts: a repository for modeling components for synthetic biology”, Bioinformatics, 26:7 (2010), 925–931 | DOI

[20] A. I. Hernandez, V. Le Rolle, A. Defontaine, G. Carrault, “A multiformalism and multiresolution modelling environment: application to the cardiovascular system and its regulation”, Philosophical Transactions of the Royal Society, 367:1908 (2009), 4923–4940

[21] P. J. Hunter, P. Robbins, D. Noble, “The IUPS human physiology project”, Pflugers Archiv European Journal of Physiology, 445:1 (2004), 551–569

[22] J. W. Fenner, B. Brook, G. Clapworthy, P. V. Coveney, V. Feipel, H. Gregersen, D. R. Hose, P. Kohl, P. Lawford, K. M. McCormack et al, “The EuroPhysiome, STEP and a roadmap for the virtual physiological human regulation”, Philosophical Transactions of the Royal Society, 366 (2008), 2979–2999

[23] F. Kolpakov, I. Akberdin, T. Kashapov, I. Kiselev, S. Kolmykov, Y. Kondrakhin, E. Kutumova, N. Mandrik, S. Pintus, A. Ryabova, R. Sharipov, I. Yevshin, A. Kel, “BioUML: an integrated environment for systems biology and collaborative analysis of biomedical data”, Nucleic Acids Research, 47:1 (2019), W225–W233 | DOI

[24] I. N. Kiselev, B. V. Semisalov, E. A. Biberdorf, R. N. Sharipov, A. M. Blokhin, F. A. Kolpakov, “Modulnoe modelirovanie serdechno-sosudistoi sistemy chelovek”, Matematicheskaya biologiya i bioinformatika, 7:2 (2012), 703–736 | DOI

[25] E. O. Kutumova, I. N. Kiselev, R. N. Sharipov, I. N. Lavrik, F. A. Kolpakov, “A modular model of the apoptosis machinery”, Advances in Experimental Medicine and Biology, 736 (2012), 235–245 | DOI

[26] M. Hucka, F. T. Bergmann, C. Chaouiya, A. Dräger, S. Hoops, S. M. Keating, M. König, N. Le Novère, Ch. J. Myers, B. G. Olivier et al, The Systems Biology Markup Language (SBML), Language Specification for Level 3 Version 2 Core. Release 2, 2019 (data obrascheniya 05.07.2019) http://sbml.org/Special/specifications/sbml-level-3/version-2/core/release-2/sbml-level-3-version-2-release-2-core.pdf | MR

[27] N. Le Novere, M. Hucka, H. Mi, S. Moodie, F. Schreiber, A. Sorokin, E. Demir, K. Wegner, M. I. Aladjem, S. M. Wimalaratne, F. T. Bergman, “The systems biology graphical notation”, Nature Biotechnology, 27:8 (2009), 735 | DOI

[28] J. Davis, C. Hylands, J. Janneck, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, S. Sachs, M. Stewart, K. Vissers et al, Overview of the Ptolemy Project, Technical Memorandum UCB/ERL M01/11, University of California, Berkeley, 2001 (data obrascheniya 05.07.2019) https://ptolemy.berkeley.edu/publications/papers/01/overview/overview.pdf

[29] P. N. Brown, G. D. Byrne, A. C. Hindmarsh, “VODE: A variable-coefficient ODE solver”, SIAM Journal on Scientific and Statistical Computing, 10:5 (1989), 1038–1051 | DOI | MR | Zbl

[30] J. R. Dormand, P. J. Prince, “A family of embedded Runge-Kutta formulae”, Journal of Computational and Applied Mathematics, 6:1 (1980), 19–26 | DOI | MR | Zbl

[31] R. Randhawa, A. S. Clifford, J. Tyson, “Model composition for macromolecular regulatory networks”, IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 7:2 (2010), 278–287 | DOI

[32] JVODE page, (data obrascheniya 05.07.2019) http://wiki.biouml.org/index.php/JVODE

[33] K. Pinter, R. T. Grignani, H. Watkins, C. Redwood, “Localisation of AMPK subunits in cardiac and skele tal muscles”, Journal of Muscle Research and Cell Motility, 34:5-6 (2013), 369–378 | DOI

[34] T. L. Dutka, G. D. Lamb, “Na$^+$-K$^+$ pumps in the transverse tubular system of skeletal muscle fibers preferentially use ATP from glycolysis”, American Journal of PhysiologyCell Physiology, 293:3 (2007), 967–977

[35] T. E. Jensen, J. F. P. Wojtaszewski, E. A. Richter, AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?, Acta Physiologica, 196:1 (2009), 155–174 | DOI