Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_2_a9, author = {I. N. Kiselev and I. R. Akberdin and A. Vertyshev and D. V. Popov and F. A. Kolpakov}, title = {A modular visual model of energy metabolism in human skeletal muscle}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {373--392}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a9/} }
TY - JOUR AU - I. N. Kiselev AU - I. R. Akberdin AU - A. Vertyshev AU - D. V. Popov AU - F. A. Kolpakov TI - A modular visual model of energy metabolism in human skeletal muscle JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 373 EP - 392 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a9/ LA - ru ID - MBB_2019_14_2_a9 ER -
%0 Journal Article %A I. N. Kiselev %A I. R. Akberdin %A A. Vertyshev %A D. V. Popov %A F. A. Kolpakov %T A modular visual model of energy metabolism in human skeletal muscle %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 373-392 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a9/ %G ru %F MBB_2019_14_2_a9
I. N. Kiselev; I. R. Akberdin; A. Vertyshev; D. V. Popov; F. A. Kolpakov. A modular visual model of energy metabolism in human skeletal muscle. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 373-392. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a9/
[1] B. K. Pedersen, M. A. Febbraio, “Muscles, exercise and obesity: skeletal muscle as a secretory organ”, Nature Reviews Endocrinology, 8:8 (2012), 457–465 | DOI
[2] Y. Li, R. K. Dash, J. Kim, G. M. Saidel, M. E. Cabrera, “Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies”, American Journal of Physiology-Cell Physiology, 296:1 (2009), 25–46
[3] I. R. Akberdin, F. V. Kazantsev, T. V. Ermak, V. S. Timonov, T. M. Khlebodarova, V. A. Likhoshvai, “In Silico Cell: Challenges and Perspectives”, Mathematical Biology and Bioinformatics, 8:1 (2013), 295–315 | DOI
[4] B. Korzeniewski, “Regulation of ATP supply during muscle contraction: theoretical studies”, Biochemical Journal, 330:3 (1998), 1189–1195 | DOI
[5] B. Korzeniewski, “Regulation of ATP supply in mammalian skeletal muscle during resting state intensive work transition”, Biophysical Chemistry, 83:1 (2000), 19–34 | DOI
[6] B. Korzeniewski, J. A. Zoladz, “A model of oxidative phosphorylation in mammalian skeletal muscle”, Biophysical Chemistry, 92:1-2 (2001), 17–34 | DOI
[7] M. J. Lambeth, M. J. Kushmerick, “A computational model for glycogenolysis in skeletal muscle”, Ann. Biomed. Eng, 30 (2002), 808–827 | DOI
[8] B. Korzeniewski, P. Liguzinski, “Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle”, Biophysical Chemistry, 110:1-2 (2004), 147–169 | DOI
[9] L. Zhou, J. E. Salem, G. M. Saidel, W. C. Stanley, M. E. Cabrera, “Mechanistic model of cardiac energy metabolism predicts localization of glycolysis to cytosolic subdomain during ischemia”, Am. J. Physiol. Heart Circ. Physiol, 288 (2005), 2400–2411
[10] L. Zhou, W. C. Stanley, G. M. Saidel, X. Yu, M. E. Cabrera, “Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD: insights from in silico studies”, J. Physiol., 569 (2005), 925–937 | DOI
[11] K. C. Vinnakota, M. L. Kemp, M. J. Kushmerick, “Dynamics of muscle glycogenolysis modeled with pH time-course computation and pH dependent reaction equilibria and enzyme kinetics”, Biophys. J., 91 (2006), 1264–1287 | DOI
[12] L. Zhou, M. E. Cabrera, I. C. Okere, N. Sharma, W. C. Stanley, “Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies”, Am. J. Physiol. Heart Circ. Physiol., 291 (2006), 1036–1046
[13] R. K. Dash, J. A. Dibella, M. E. Cabrera, “A computational model of skeletal muscle metabolism linking cellular adaptations induced by altered loading states to metabolic responses during exercise”, Biomed. Eng. Online, 6:1 (2007), 14 | DOI | MR
[14] F. Wu, J. A. L. Jeneson, D. A. Beard, “Oxidative ATP synthesis in skeletal muscle is controlled by substrate feedback”, Am. J. Physiol. Cell Physiol., 292 (2007), 115–124
[15] L. Zhou, M. E. Cabrera, H. Huang, C. Yuan, M. Duda, N. Sharma, F. Bian, W. C. Stanley, “Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation”, J. Physiol., 579 (2007), 811–821 | DOI
[16] Y. Li, N. Lai, J. P. Kirwan, G. M. Saidel, “Computational model of cellular metabolic dynamics in skeletal muscle fibers during moderate intensity exercise”, Cellular and Mol. Bioeng., 5:1 (2012), 92–112 | DOI
[17] C. M. Kummitha, S. C. Kalhan, G. M. Saidel, N. Lai, “Relating tissue/organ energy expenditure to metabolic fluxes in mouse and human: experimental data integrated with mathematical modeling”, Physiol. Rep., 2:9 (2014) | DOI
[18] J. L. Snoep, F. Bruggeman, B. G. Westerhoff, H. V. Olivier, “Towards building the silicon cell: a modular approach”, Biosystems, 83 (2006), 207–216 | DOI
[19] M. T. Cooling, V. Rouilly, G. Misirli, T. Lawson Ju, J. Halinan, A. Wipat, “Standard virtual biological parts: a repository for modeling components for synthetic biology”, Bioinformatics, 26:7 (2010), 925–931 | DOI
[20] A. I. Hernandez, V. Le Rolle, A. Defontaine, G. Carrault, “A multiformalism and multiresolution modelling environment: application to the cardiovascular system and its regulation”, Philosophical Transactions of the Royal Society, 367:1908 (2009), 4923–4940
[21] P. J. Hunter, P. Robbins, D. Noble, “The IUPS human physiology project”, Pflugers Archiv European Journal of Physiology, 445:1 (2004), 551–569
[22] J. W. Fenner, B. Brook, G. Clapworthy, P. V. Coveney, V. Feipel, H. Gregersen, D. R. Hose, P. Kohl, P. Lawford, K. M. McCormack et al, “The EuroPhysiome, STEP and a roadmap for the virtual physiological human regulation”, Philosophical Transactions of the Royal Society, 366 (2008), 2979–2999
[23] F. Kolpakov, I. Akberdin, T. Kashapov, I. Kiselev, S. Kolmykov, Y. Kondrakhin, E. Kutumova, N. Mandrik, S. Pintus, A. Ryabova, R. Sharipov, I. Yevshin, A. Kel, “BioUML: an integrated environment for systems biology and collaborative analysis of biomedical data”, Nucleic Acids Research, 47:1 (2019), W225–W233 | DOI
[24] I. N. Kiselev, B. V. Semisalov, E. A. Biberdorf, R. N. Sharipov, A. M. Blokhin, F. A. Kolpakov, “Modulnoe modelirovanie serdechno-sosudistoi sistemy chelovek”, Matematicheskaya biologiya i bioinformatika, 7:2 (2012), 703–736 | DOI
[25] E. O. Kutumova, I. N. Kiselev, R. N. Sharipov, I. N. Lavrik, F. A. Kolpakov, “A modular model of the apoptosis machinery”, Advances in Experimental Medicine and Biology, 736 (2012), 235–245 | DOI
[26] M. Hucka, F. T. Bergmann, C. Chaouiya, A. Dräger, S. Hoops, S. M. Keating, M. König, N. Le Novère, Ch. J. Myers, B. G. Olivier et al, The Systems Biology Markup Language (SBML), Language Specification for Level 3 Version 2 Core. Release 2, 2019 (data obrascheniya 05.07.2019) http://sbml.org/Special/specifications/sbml-level-3/version-2/core/release-2/sbml-level-3-version-2-release-2-core.pdf | MR
[27] N. Le Novere, M. Hucka, H. Mi, S. Moodie, F. Schreiber, A. Sorokin, E. Demir, K. Wegner, M. I. Aladjem, S. M. Wimalaratne, F. T. Bergman, “The systems biology graphical notation”, Nature Biotechnology, 27:8 (2009), 735 | DOI
[28] J. Davis, C. Hylands, J. Janneck, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, S. Sachs, M. Stewart, K. Vissers et al, Overview of the Ptolemy Project, Technical Memorandum UCB/ERL M01/11, University of California, Berkeley, 2001 (data obrascheniya 05.07.2019) https://ptolemy.berkeley.edu/publications/papers/01/overview/overview.pdf
[29] P. N. Brown, G. D. Byrne, A. C. Hindmarsh, “VODE: A variable-coefficient ODE solver”, SIAM Journal on Scientific and Statistical Computing, 10:5 (1989), 1038–1051 | DOI | MR | Zbl
[30] J. R. Dormand, P. J. Prince, “A family of embedded Runge-Kutta formulae”, Journal of Computational and Applied Mathematics, 6:1 (1980), 19–26 | DOI | MR | Zbl
[31] R. Randhawa, A. S. Clifford, J. Tyson, “Model composition for macromolecular regulatory networks”, IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 7:2 (2010), 278–287 | DOI
[32] JVODE page, (data obrascheniya 05.07.2019) http://wiki.biouml.org/index.php/JVODE
[33] K. Pinter, R. T. Grignani, H. Watkins, C. Redwood, “Localisation of AMPK subunits in cardiac and skele tal muscles”, Journal of Muscle Research and Cell Motility, 34:5-6 (2013), 369–378 | DOI
[34] T. L. Dutka, G. D. Lamb, “Na$^+$-K$^+$ pumps in the transverse tubular system of skeletal muscle fibers preferentially use ATP from glycolysis”, American Journal of PhysiologyCell Physiology, 293:3 (2007), 967–977
[35] T. E. Jensen, J. F. P. Wojtaszewski, E. A. Richter, AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?, Acta Physiologica, 196:1 (2009), 155–174 | DOI