Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_2_a8, author = {A. A. Zimin and N. A. Nikulin and N. N. Nazipova}, title = {Homologs of {RNA} ligase 2 of the bacteriophage {T4} in metagenomes of ocean microbiota}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {683--704}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a8/} }
TY - JOUR AU - A. A. Zimin AU - N. A. Nikulin AU - N. N. Nazipova TI - Homologs of RNA ligase 2 of the bacteriophage T4 in metagenomes of ocean microbiota JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 683 EP - 704 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a8/ LA - ru ID - MBB_2019_14_2_a8 ER -
%0 Journal Article %A A. A. Zimin %A N. A. Nikulin %A N. N. Nazipova %T Homologs of RNA ligase 2 of the bacteriophage T4 in metagenomes of ocean microbiota %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 683-704 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a8/ %G ru %F MBB_2019_14_2_a8
A. A. Zimin; N. A. Nikulin; N. N. Nazipova. Homologs of RNA ligase 2 of the bacteriophage T4 in metagenomes of ocean microbiota. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 683-704. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a8/
[1] S. Shuman, B. Schwer, “RNA capping enzyme and DNA ligase: A superfamily of covalent nucleotidyl transferases”, Molecular Microbiology, 17 (1995), 405–410 | DOI
[2] R. Silber, V. G. Malathi, J. Hurwitz, “Purification and properties of bacteriophage T4-induced RNA ligase”, Proc. Natl. Acad. Sci. U S A, 69 (1972), 3009–3013 | DOI
[3] L. K. Wang, S. Shuman, “Structure-function analysis of yeast tRNA ligase”, RNA, 11:6 (2005), 966–975 | DOI
[4] C. K. Ho, S. Shuman, “Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains”, Proc. Natl. Acad. Sci. U S A, 99 (2002), 12709–12714 | DOI
[5] J. Abelson, C. R. Trotta, H. Li, “tRNA splicing”, The Journal of Biological Chemistry, 273 (1998), 12685–12688 | DOI
[6] M. Englert, H. Beier, “Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins”, Nucleic Acids Research, 33 (2005), 388–399 | DOI
[7] V. Blanc, J. D. Alfonzo, R. Aphasizhev, L. Simpson, “The mitochondrial RNA ligase from Leishmania tarentolae can join RNA molecules bridged by a complementary RNA”, Journal of Biological Chemistry, 274 (1999), 24289–24296 | DOI
[8] S. S. Palazzo, A. K. Panigrahi, R. P. Jr. Igo, R. Salavati, K. Stuart, “Kinetoplastid RNA editing ligases: complex association, characterization, and substrate requirements”, Molecular and Biochemical Parasitology, 127 (2003), 161–167 | DOI
[9] K. Stuart, R. Brun, S. Croft, A. Fairlamb, R. E. Gurtler, J. McKerrow, S. Reed, R. Tarleton, “Kinetoplastids: related protozoan pathogens, different diseases”, J. Clin. Invest, 118 (2008), 1301–1310 | DOI
[10] L. Simpson, A. Da Silva, “Isolation and characterization of kinetoplast DNA from Leishmania tarentolae”, J. Mol. Biol., 56 (1971), 443–473 | DOI
[11] B. Blum, N. Bakalara, L. Simpson, “A model for RNA editing in kinetoplastid mitochondria: RNA molecules transcribed from maxicircle DNA provide the edited information”, Cell, 60 (1990), 89–198 | DOI
[12] N. R. Sturm, L. Simpson, “Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA”, Cell, 61 (1990), 879–884 | DOI
[13] P. H. Rehse, T. H. Tahirov, “Structure of a putative 2'-5' RNA ligase from Pyrococcus horikoshii”, Acta Crystallographica Section D: Biological Crystallography, 61 (2005), 1207–1212 | DOI | MR
[14] K. K. Desai, C. A. Bingman, G. N. Jr. Phillips, R. T. Raines, “Structures of the Noncanonical RNA Ligase RtcB Reveal the Mechanism of Histidine Guanylylation”, Biochemistry, 52 (2013), 2518–2525 | DOI
[15] K. K. Desai, C. L. Cheng, C. A. Bingman, G. N. Jr. Phillips, R. T. Raines, “A tRNA splicing operon: archease endows RtcB with dual GTP/ATP cofactor specificity and accelerates RNA ligation”, Nucleic Acids Research, 42 (2014), 3931–3942 | DOI
[16] R. Aphasizhev, I. Aphasizheva, “Mitochondrial RNA editing in trypanosomes: small RNAs in control”, Biochimie, 100 (2014), 125–131 | DOI
[17] S. Moreira, E. Noutahi, G. Lamoureux, G. Burger, “Three-dimensional structure model and predicted ATP interaction rewiring of a deviant RNA ligase 2”, BMC Struct. Biol., 15 (2015) | DOI
[18] S. J. Williamson, D. B. Rusch, S. Yooseph, A. L. Halpern, K. B. Heidelberg, J. I. Glass, C. Andrews-Pfannkoch, D. Fadrosh, C. S. Miller, G. Sutton, M. Frazier, J. C. Venter, “The Sorcerer II Global Ocean Sampling Expedition: Metagenomic Characterization of Viruses within Aquatic Microbial Samples”, PLoS One, 3 (2008) | DOI
[19] S. Yooseph, G. Sutton, D. B. Rusch, A. L. Halpern, S. J. Williamson, K. Remington, J. A. Eisen, K. B. Heidelberg, G. Manning, W. Li et al., “The Sorcerer II Global Ocean Sampling expedition: Expanding the universe of protein families”, PLoS Biol, 5 (2007) | DOI
[20] S. L. Jorgensen, B. Hannisdal, A. Lanzén, T. Baumberger, K. Flesland, R. Fonseca, L. Ovreås, I. H. Steen, I. H. Thorseth, R. B. Pedersen, C. Schleper, “Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge”, Proc. Natl. Acad. Sci. U S A, 109 (2012), E2846–E2855 | DOI
[21] T. Brettin, J. J. Davis, T. Disz, R. A. Edwards, S. Gerdes, G. J. Olsen, R. Olson, R. Overbeek, B. Parrello, G. D. Pusch et al., “RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes”, Sci. Rep., 5 (2015), 8365 | DOI
[22] A. M.Q. King, E. J. Lefkowitz, A. R. Mushegian, M. J. Adams, B. E. Dutilh, A. E. Gorbalenya, B. Harrach, R. L. Harrison, S. Junglen, N. J. Knowles et al, “Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018)”, Arch. Virol., 163 (2018), 2601–2631 | DOI
[23] S. Federhen, “The NCBI Taxonomy database”, Nucleic Acids Res., 40 (2012), D136–D143 | DOI
[24] D. A. Benson, M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, E. W. Sayers, “GenBank”, Nucleic Acids Res, 41 (2013), D36–D42 | DOI
[25] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman, “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”, Nucleic Acids Res., 25 (1997), 3389–3402 | DOI
[26] D. T. Jones, W. R. Taylor, J. M. Thornton, “The rapid generation of mutation data matrices from protein sequences”, Computer Applications in the Biosciences, 8 (1992), 275–282 | DOI
[27] J. Felsenstein, “Confidence limits on phylogenies: An approach using the bootstrap”, Evolution, 39 (1985), 783–791 | DOI
[28] S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, “MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms”, Molecular Biology and Evolution, 35 (2018), 1547–1549 | DOI
[29] T. Cavalier-Smith, “Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences”, Protoplasma, 255 (2018), 297–357 | DOI
[30] R. C. Edgar, “MUSCLE: multiple sequence alignment with high accuracy and high throughput”, Nucleic Acids Res., 32 (2004), 1792–1797 | DOI
[31] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, D. G. Higgins, “ClustalW and ClustalX version 2.0”, Bioinformatics, 23 (2007), 2947–2948 | DOI