Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_2_a6, author = {A. M. Andrianov and G. I. Nikolaev and Yu. V. Kornoushenko and Huang J. and Jiang S. and A. V. Tuzikov}, title = {\emph{In silico} identification of high-affinity ligands of the {HIV-1} gp120 protein, potential peptidomimetics of neutralizing antibody {N6}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {430--449}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a6/} }
TY - JOUR AU - A. M. Andrianov AU - G. I. Nikolaev AU - Yu. V. Kornoushenko AU - Huang J. AU - Jiang S. AU - A. V. Tuzikov TI - \emph{In silico} identification of high-affinity ligands of the HIV-1 gp120 protein, potential peptidomimetics of neutralizing antibody N6 JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 430 EP - 449 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a6/ LA - ru ID - MBB_2019_14_2_a6 ER -
%0 Journal Article %A A. M. Andrianov %A G. I. Nikolaev %A Yu. V. Kornoushenko %A Huang J. %A Jiang S. %A A. V. Tuzikov %T \emph{In silico} identification of high-affinity ligands of the HIV-1 gp120 protein, potential peptidomimetics of neutralizing antibody N6 %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 430-449 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a6/ %G ru %F MBB_2019_14_2_a6
A. M. Andrianov; G. I. Nikolaev; Yu. V. Kornoushenko; Huang J.; Jiang S.; A. V. Tuzikov. \emph{In silico} identification of high-affinity ligands of the HIV-1 gp120 protein, potential peptidomimetics of neutralizing antibody N6. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 430-449. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a6/
[1] E. J. Arts, D. J. Hazuda, “HIV-1 antiretroviral drug therapy”, Cold Spring Harb. Perspect. Med., 2 (2012), a007161 | DOI
[2] G. Kumari, R. K. Singh, “Highly active antiretroviral therapy for treatment of HIV/AIDS patients: current status and future prospects and the Indian scenario”, HIV AIDS Rev., 11 (2012), 5–14 | DOI
[3] H. B. Wang, Q. H. Mo, Z. Yang, “HIV vaccine research: The challenge and the way forward”, J. Immunol. Res., 13 (2015), 1–5
[4] D. H. Barouch, “Challenges in the development of an HIV-1 vaccine”, Nature, 455 (2008), 613–619 | DOI
[5] L. M. Walker, D. R. Burton, “Rational antibody-based HIV-1 vaccine design: Current approaches and future directions”, Curr. Opin. Immunol., 22 (2010), 358–366 | DOI
[6] D. Corti, A. Lanzavecchia, “Broadly neutralizing antiviral antibodies”, Annu. Rev. Immunol, 31 (2013), 705–742 | DOI
[7] J. R. Mascola, B. F. Haynes, “HIV-1 neutralizing antibodies: understanding nature's pathways”, Immunol. Rev., 254 (2013), 225–244 | DOI
[8] B. F. Haynes, M. J. McElrath, “Progress in HIV-1 vaccine development”, Curr. Opin. HIV AIDS, 8 (2013), 326–332
[9] P. D. Kwong, J. R. Mascola, G. J. Nabel, “Rational design of vaccines to elicit broadly neutralizing antibodies to HIV-1”, Cold Spring Harb. Perspect. Med., 1 (2011), a007278 | DOI
[10] M. J. Van Gils, “Sanders RW Broadly neutralizing antibodies against HIV-1: Templates for a vaccine”, Virol., 435 (2013), 46–56 | DOI
[11] J. K. Mann, T. Ndung'u, “HIV-1 vaccine immunogen design strategies”, Virol. J., 12 (2015), 3 | DOI
[12] J. Huang, B. H. Kang, E. Ishida, T. Zhou, T. Griesman, Z. Sheng, F. Wu, N. A. Doria-Rose, B. Zhang, K. McKee et al., “Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth”, Immunity, 45 (2016), 1108–1121 | DOI
[13] P. D. Kwong, J. R. Mascola, G. J. Nabel, “The changing face of HIV vaccine research”, J. Int. AIDS Soc., 15 (2012), 17407 | DOI
[14] J. Huang, B. H. Kang, M. Pancera, J. H. Lee, T. Tong, Y. Feng, H. Imamichi, I. S. Georgiev, G. Y. Chuang, A. Druz et al, “Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface”, Nature, 515 (2014), 138–142 | DOI
[15] C. Blattner, J. H. Lee, K. Sliepen, R. Derking, E. Falkowska, A. T. de la Peña, A. Cupo, J. P. Julien, M. van Gils, P. S. Lee et al, “Structural delineation of a quaternary, cleavagedependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers”, Immunity, 40 (2014), 669–680 | DOI
[16] E. Falkowska, K. M. Le, A. Ramos, K. J. Doores, J. H. Lee, C. Blattner, A. Ramirez, R. Derking, M. J. van Gils, C. H. Liang et al, “Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers”, Immunity, 40 (2014), 657–668 | DOI
[17] L. Scharf, J. F. Scheid, J. H. Lee, West A. P. Jr, C. Chen, H. Gao, P. N.P. Gnanapragasam, R. Mares, M. S. Seaman, A. B. Ward et al, “Antibody 8ANC195 reveals a site of broad vulnerability on the HIV-1 envelope spike”, Cell Rep, 7 (2014), 785–795 | DOI
[18] J. H. Lee, D. P. Leaman, A. S. Kim, A. Torrents de la Pena, K. Sliepen, A. Yasmeen, R. Derking, A. Ramos, S. W. de Taeye, G. Ozorowski et al, “Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike”, Nature Commun., 6 (2015), 8167 | DOI
[19] R. Kong, K. Xu, T. Zhou, P. Acharya, T. Lemmin, K. Liu, G. Ozorowski, C. Soto, J. D. Taft, R. T. Bailer et al, “Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody”, Science, 352 (2016), 828–833 | DOI
[20] C. K. Wibmer, J. Gorman, G. Ozorowski, J. N. Bhiman, D. J. Sheward, D. H. Elliott, J. Rouelle, A. Smira, M. G. Joyce, N. Ndabambi et al, “Structure and recognition of a novel HIV-1 gp120-gp41 interface antibody that caused MPER exposure through viral escape”, PLoS Pathog., 13:1 (2017), e1006074 | DOI | MR
[21] W. Li, L. Lu, W. Li, S. Jiang, “Small-molecule HIV-1 entry inhibitors targeting gp120 and gp41: a patent review (2010-2015)”, Expert Opin. Ther. Pat., 27 (2017), 707–719 | DOI
[22] S. Su, Q. Wang, W. Xu, F. Yu, C. Hua, Y. Zhu, S. Jiang, L. Lu, “A novel HIV-1 gp41 tripartite model for rational design of HIV-1 fusion inhibitors with improved antiviral activity”, AIDS (London, England), 31 (2017), 885–894 | DOI
[23] R. D. MacArthur, R. M. Novak, “Maraviroc: The first of a new class of antiretroviral agents”, Clin. Infect. Dis., 47 (2008), 236–241 | DOI
[24] T. Matthews, M. Salgo, M. Greenberg, J. Chung, R. DeMasi, D. Bolognesi, “Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes”, Nat. Rev. Drug Discov., 3 (2004), 215–225 | DOI
[25] I. A. Kashin, A. V. Tuzikov, A. M. Andrianov, “Virtualnyi skrining novykh ingibitorov proniknoveniya VICh-1, blokiruyuschikh CD4-svyazyvayuschii uchastok belka gp120 obolochki virusa”, Mat. biologiya i bioinformatika, 9:2 (2014), 359–372
[26] I. A. Kashin, A. V. Tuzikov, A. M. Andrianov, “Identifikatsiya novykh potentsialnykh ingibitorov belka gp41 VICh-1 metodami virtualnogo skrininga i molekulyarnogo modelirovaniya”, Mat. biologiya i bioinformatika, 10:2 (2015), 325–343
[27] J. Sunseri, D. R. Koes, “Pharmit: interactive exploration of chemical space”, Nucl. Acids Res., 44 (2016), W442–W448 | DOI
[28] S. D. Handoko, X. Ouyang, C. T. T. Su, C. K. Kwoh, Y. S. Ong, “QuickVina: Accelerating AutoDock Vina using gradient-based heuristics for global optimization”, IEEE/ACM Trans. Comput. Biol. Bioinform., 9 (2012), 1266–1272 | DOI
[29] F. Curreli, Y. D. Kwon, H. Zhanga, D. Scacalossia, D. S. Belov, A. A. Tikhonov, I. A. Andreev, A. Altieric, A. V. Kurkin, P. D. Kwong, A. K. Debnath, “Structure-based design of a small molecule CD4-antagonist with broad spectrum anti-HIV-1 activity”, J. Med. Chem., 58 (2015), 6909–6927 | DOI
[30] J. M. Lalonde, M. Le-Khac, D. M. Jones, J. R. Courter, J. Park, A. Schön, A. M. Princiotto, X. Wu, J. R. Mascola, E. Freire, J. Sodroski, N. Madani, W. A. Hendrickson, Smith A. B. III, “Structure-based design and synthesis of an HIV-1 entry inhibitor exploiting X-ray and thermodynamic characterization”, ACS Med. Chem. Lett, 4 (2013), 338–343 | DOI
[31] J. R. Courter, N. Madani, J. Sodroski, A. Schön, E. Freire, P. D. Kwong, W. A. Hendrickson, I. M. Chaiken, J. M. LaLonde, Smith A. B. III, “Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: Conversion of a viral entry agonist to an antagonist”, Acc. Chem. Res., 47 (2014), 1228–1237 | DOI
[32] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, “Open Babel: An open chemical toolbox”, Journal of Cheminformatics, 3 (2011)
[33] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, W. M. Skiff, “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations”, J. Am. Chem. Soc., 114 (1992), 10024–10035 | DOI
[34] J. J. P. Stewart, “Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters”, J. Mol. Model., 19 (2013), 1–32 | DOI
[35] J. J. P. Stewart, MOPAC2016. Colorado Springs: Stewart Computational Chemistry, 2016 (data obrascheniya: 20.09.2019) http://OpenMOPAC.net
[36] A. Klamt, G. Schüürmann, “COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient”, J. Chem. Soc. Perkin Trans., 2 (1993), 799–805 | DOI
[37] A. Klamt, From quantum chemistry to fluid phase thermodynamics and drug design, Boston, MA, USA, 2005
[38] A. Klamt, C. Moya, J. Palomar, “A comprehensive comparison of the IEFPCM and SS(V)PE continuum solvation methods with the COSMO approach”, J. Chem. Theory Comput., 11 (2015), 4220–4225 | DOI
[39] I. M. Høyvik, B. Jansik, P. Jørgensen, “Trust region minimization of orbital localization functions”, J. Chem. Theory Comput., 8 (2012), 3137–3146 | DOI
[40] S. Lehtola, H. Jónsson, “Unitary optimization of localized molecular orbitals”, J. Chem. Theory Comput., 9 (2013), 5365–5372 | DOI
[41] J. D. Durrant, J. A. McCammon, “BINANA: A novel algorithm for ligand-binding characterization”, J. Mol. Graph. Model, 29 (2011), 888–893 | DOI
[42] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, “UCSF Chimera a visualization system for exploratory research and analysis”, J. Comput. Chem., 25:13 (2004), 1605–1612 | DOI
[43] I. K. McDonald, J. M. Thornton, “Satisfying hydrogen bonding potential in proteins”, J. Mol. Biol., 238 (1994), 777–793 | DOI
[44] D. A. Case, R. M. Betz, D. S. Cerutti, T. E. Cheatham, T. A. Darden III, R. E. Duke, T. J. Giese, H. Gohlke, A. W. Goetz, N. Homeyer et al, AMBER 2016, University of California, San Francisco, 2016
[45] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, “Comparison of simple potential functions for simulating liquid water”, J. Chem. Phys., 79 (1983), 926–935 | DOI
[46] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, “Development and testing of a general Amber force field”, J. Comput. Chem., 25 (2004), 1157–1174 | DOI
[47] H. Sun, Y. Li, S. Tian, L. Xu, T. Hou, “Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set”, Phys. Chem. Chem. Phys., 16 (2014), 16719–16729 | DOI
[48] L. Xu, H. Sun, Y. Li, J. Wang, T. Hou, “Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models”, J. Phys. Chem. B, 117 (2013), 8408–8421 | DOI
[49] H. Sun, Y. Li, M. Shen, S. Tian, L. Xu, P. Pan, Y. Guan, T. Hou, “Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring”, Phys. Chem. Chem. Phys., 16 (2014), 22035–22045 | DOI
[50] J. P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, “Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes”, J. Comput. Phys., 23 (1977), 327–341 | DOI
[51] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, “A smooth particle mesh Ewald method”, J. Chem. Phys., 103 (1995), 8577–8593 | DOI
[52] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, D. E. Shaw, “Improved side-chain torsion potentials for the Amber ff99SB protein force field”, Proteins, 78 (2010), 1950–1958 | DOI
[53] Kwong P.D, R. Wyatt, J. Robinson, R. W. Sweet, J. Sodroski, W. A. Hendrickson, “Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody”, Nature, 393 (1998), 648–659 | DOI
[54] Y. Liu, A. Schön, E. Freire, “Optimization of CD4/gp120 inhibitors by thermodynamicguided alanine-scanning mutagenesis”, Chem. Biol. Drug Des., 81 (2013), 72–78 | DOI
[55] U. Moebius, L. K. Clayton, S. Abraham, S. C. Harrison, E. L. Reinherz, “The human immunodeficiency virus-gp120 binding-site on CD4 Delineation by quantitative equilibrium and kinetic binding studies of mutants in conjunction with a high-resolution CD4 atomic-structure”, J. Exp. Med, 176 (1992), 507–517 | DOI
[56] U. Olshevsky, E. Helseth, C. Furman, J. Li, W. Haseltine, J. Sodroski, “Identification of individual human-immunodeficiency-virus type-1 gp120 amino-acids important for CD4 receptor-binding”, J. Virol., 64 (1990), 5701–5707 | DOI
[57] J. D. Durrant, J. A. McCammon, “NNScore 2.0: A neural-network receptor-ligand scoring function”, J. Chem. Inf. Model., 51 (2011), 2897–2903 | DOI
[58] G. Sharma, E. A. First, “Thermodynamic Analysis Reveals a Temperature-dependent Change in the Catalytic Mechanism of Bacillus stearothermophilus Tyrosyl-tRNA Synthetase”, J. Biol. Chem., 284 (2009), 4179–4190 | DOI
[59] A. S. Christensen, T. Kubař, Q. Cui, M. Elstner, “Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications”, Chem. Rev., 116:9 (2016), 5301–5337 | DOI
[60] A. V. Sulimov, D. C. Kutov, E. V. Katkova, V. B. Sulimov, “Combined docking with classical force field and quantum chemical semiempirical method PM7”, Adv. Bioinformatics, 5 (2017), 1–6 | DOI
[61] M. Le-Khac, Structure-based design of small molecule inhibitors of HIV-1 entry, Doctoral Thesis, Columbia University, 2013 | DOI
[62] D. G. Myszka, R. W. Sweet, P. Hensley, M. Brigham-Burke, P. D. Kwong, W. A. Hendrickson, R. Wyatt, J. Sodroski, M. L. Doyle, “Energetics of the HIV gp120-CD4 binding reaction”, Proc. Natl. Acad. Sci. USA, 97 (2000), 9026–9031 | DOI