\emph{In silico} identification of high-affinity ligands of the HIV-1 gp120 protein, potential peptidomimetics of neutralizing antibody N6
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 430-449.

Voir la notice de l'article provenant de la source Math-Net.Ru

Six potential peptidomimetics of the cross-reactive neutralizing anti-HIV-1 antibody N6 that are able to mimic the pharmacophoric features of this immunoglobulin by specific and effective interactions with the CD4-binding site of the viral gp120 protein were identified by virtual screening and molecular modeling. The key role in the interaction of these compounds with gp120 is shown to play multiple van der Waals contacts with conserved residues of the gp120 Phe-43 cavity critical for the HIV binding to cellular receptor CD4, as well as hydrogen bond with Asp-368gp120 that increase the chemical affinity without activating unwanted allosteric effect. According to the data of molecular dynamics, the complexes of the identified ligands with gp120 are energetically stable and show the lower values of binding free energy compared with the HIV-1 inhibitors NBD-11021 and DMJ-II-121 used in the calculations as a positive control. Based on the data obtained, it was concluded that the identified compounds may be considered as promising candidates for detailed experimental studies to their further use in the design of novel antiviral drugs presenting HIV-1 inhibitors that block the early stages of the development of HIV infection.
@article{MBB_2019_14_2_a6,
     author = {A. M. Andrianov and G. I. Nikolaev and Yu. V. Kornoushenko and Huang J. and Jiang S. and A. V. Tuzikov},
     title = {\emph{In silico} identification of high-affinity ligands of the {HIV-1} gp120 protein, potential peptidomimetics of neutralizing antibody {N6}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {430--449},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a6/}
}
TY  - JOUR
AU  - A. M. Andrianov
AU  - G. I. Nikolaev
AU  - Yu. V. Kornoushenko
AU  - Huang J.
AU  - Jiang S.
AU  - A. V. Tuzikov
TI  - \emph{In silico} identification of high-affinity ligands of the HIV-1 gp120 protein, potential peptidomimetics of neutralizing antibody N6
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 430
EP  - 449
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a6/
LA  - ru
ID  - MBB_2019_14_2_a6
ER  - 
%0 Journal Article
%A A. M. Andrianov
%A G. I. Nikolaev
%A Yu. V. Kornoushenko
%A Huang J.
%A Jiang S.
%A A. V. Tuzikov
%T \emph{In silico} identification of high-affinity ligands of the HIV-1 gp120 protein, potential peptidomimetics of neutralizing antibody N6
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 430-449
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a6/
%G ru
%F MBB_2019_14_2_a6
A. M. Andrianov; G. I. Nikolaev; Yu. V. Kornoushenko; Huang J.; Jiang S.; A. V. Tuzikov. \emph{In silico} identification of high-affinity ligands of the HIV-1 gp120 protein, potential peptidomimetics of neutralizing antibody N6. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 430-449. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a6/

[1] E. J. Arts, D. J. Hazuda, “HIV-1 antiretroviral drug therapy”, Cold Spring Harb. Perspect. Med., 2 (2012), a007161 | DOI

[2] G. Kumari, R. K. Singh, “Highly active antiretroviral therapy for treatment of HIV/AIDS patients: current status and future prospects and the Indian scenario”, HIV AIDS Rev., 11 (2012), 5–14 | DOI

[3] H. B. Wang, Q. H. Mo, Z. Yang, “HIV vaccine research: The challenge and the way forward”, J. Immunol. Res., 13 (2015), 1–5

[4] D. H. Barouch, “Challenges in the development of an HIV-1 vaccine”, Nature, 455 (2008), 613–619 | DOI

[5] L. M. Walker, D. R. Burton, “Rational antibody-based HIV-1 vaccine design: Current approaches and future directions”, Curr. Opin. Immunol., 22 (2010), 358–366 | DOI

[6] D. Corti, A. Lanzavecchia, “Broadly neutralizing antiviral antibodies”, Annu. Rev. Immunol, 31 (2013), 705–742 | DOI

[7] J. R. Mascola, B. F. Haynes, “HIV-1 neutralizing antibodies: understanding nature's pathways”, Immunol. Rev., 254 (2013), 225–244 | DOI

[8] B. F. Haynes, M. J. McElrath, “Progress in HIV-1 vaccine development”, Curr. Opin. HIV AIDS, 8 (2013), 326–332

[9] P. D. Kwong, J. R. Mascola, G. J. Nabel, “Rational design of vaccines to elicit broadly neutralizing antibodies to HIV-1”, Cold Spring Harb. Perspect. Med., 1 (2011), a007278 | DOI

[10] M. J. Van Gils, “Sanders RW Broadly neutralizing antibodies against HIV-1: Templates for a vaccine”, Virol., 435 (2013), 46–56 | DOI

[11] J. K. Mann, T. Ndung'u, “HIV-1 vaccine immunogen design strategies”, Virol. J., 12 (2015), 3 | DOI

[12] J. Huang, B. H. Kang, E. Ishida, T. Zhou, T. Griesman, Z. Sheng, F. Wu, N. A. Doria-Rose, B. Zhang, K. McKee et al., “Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth”, Immunity, 45 (2016), 1108–1121 | DOI

[13] P. D. Kwong, J. R. Mascola, G. J. Nabel, “The changing face of HIV vaccine research”, J. Int. AIDS Soc., 15 (2012), 17407 | DOI

[14] J. Huang, B. H. Kang, M. Pancera, J. H. Lee, T. Tong, Y. Feng, H. Imamichi, I. S. Georgiev, G. Y. Chuang, A. Druz et al, “Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface”, Nature, 515 (2014), 138–142 | DOI

[15] C. Blattner, J. H. Lee, K. Sliepen, R. Derking, E. Falkowska, A. T. de la Peña, A. Cupo, J. P. Julien, M. van Gils, P. S. Lee et al, “Structural delineation of a quaternary, cleavagedependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers”, Immunity, 40 (2014), 669–680 | DOI

[16] E. Falkowska, K. M. Le, A. Ramos, K. J. Doores, J. H. Lee, C. Blattner, A. Ramirez, R. Derking, M. J. van Gils, C. H. Liang et al, “Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers”, Immunity, 40 (2014), 657–668 | DOI

[17] L. Scharf, J. F. Scheid, J. H. Lee, West A. P. Jr, C. Chen, H. Gao, P. N.P. Gnanapragasam, R. Mares, M. S. Seaman, A. B. Ward et al, “Antibody 8ANC195 reveals a site of broad vulnerability on the HIV-1 envelope spike”, Cell Rep, 7 (2014), 785–795 | DOI

[18] J. H. Lee, D. P. Leaman, A. S. Kim, A. Torrents de la Pena, K. Sliepen, A. Yasmeen, R. Derking, A. Ramos, S. W. de Taeye, G. Ozorowski et al, “Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike”, Nature Commun., 6 (2015), 8167 | DOI

[19] R. Kong, K. Xu, T. Zhou, P. Acharya, T. Lemmin, K. Liu, G. Ozorowski, C. Soto, J. D. Taft, R. T. Bailer et al, “Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody”, Science, 352 (2016), 828–833 | DOI

[20] C. K. Wibmer, J. Gorman, G. Ozorowski, J. N. Bhiman, D. J. Sheward, D. H. Elliott, J. Rouelle, A. Smira, M. G. Joyce, N. Ndabambi et al, “Structure and recognition of a novel HIV-1 gp120-gp41 interface antibody that caused MPER exposure through viral escape”, PLoS Pathog., 13:1 (2017), e1006074 | DOI | MR

[21] W. Li, L. Lu, W. Li, S. Jiang, “Small-molecule HIV-1 entry inhibitors targeting gp120 and gp41: a patent review (2010-2015)”, Expert Opin. Ther. Pat., 27 (2017), 707–719 | DOI

[22] S. Su, Q. Wang, W. Xu, F. Yu, C. Hua, Y. Zhu, S. Jiang, L. Lu, “A novel HIV-1 gp41 tripartite model for rational design of HIV-1 fusion inhibitors with improved antiviral activity”, AIDS (London, England), 31 (2017), 885–894 | DOI

[23] R. D. MacArthur, R. M. Novak, “Maraviroc: The first of a new class of antiretroviral agents”, Clin. Infect. Dis., 47 (2008), 236–241 | DOI

[24] T. Matthews, M. Salgo, M. Greenberg, J. Chung, R. DeMasi, D. Bolognesi, “Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes”, Nat. Rev. Drug Discov., 3 (2004), 215–225 | DOI

[25] I. A. Kashin, A. V. Tuzikov, A. M. Andrianov, “Virtualnyi skrining novykh ingibitorov proniknoveniya VICh-1, blokiruyuschikh CD4-svyazyvayuschii uchastok belka gp120 obolochki virusa”, Mat. biologiya i bioinformatika, 9:2 (2014), 359–372

[26] I. A. Kashin, A. V. Tuzikov, A. M. Andrianov, “Identifikatsiya novykh potentsialnykh ingibitorov belka gp41 VICh-1 metodami virtualnogo skrininga i molekulyarnogo modelirovaniya”, Mat. biologiya i bioinformatika, 10:2 (2015), 325–343

[27] J. Sunseri, D. R. Koes, “Pharmit: interactive exploration of chemical space”, Nucl. Acids Res., 44 (2016), W442–W448 | DOI

[28] S. D. Handoko, X. Ouyang, C. T. T. Su, C. K. Kwoh, Y. S. Ong, “QuickVina: Accelerating AutoDock Vina using gradient-based heuristics for global optimization”, IEEE/ACM Trans. Comput. Biol. Bioinform., 9 (2012), 1266–1272 | DOI

[29] F. Curreli, Y. D. Kwon, H. Zhanga, D. Scacalossia, D. S. Belov, A. A. Tikhonov, I. A. Andreev, A. Altieric, A. V. Kurkin, P. D. Kwong, A. K. Debnath, “Structure-based design of a small molecule CD4-antagonist with broad spectrum anti-HIV-1 activity”, J. Med. Chem., 58 (2015), 6909–6927 | DOI

[30] J. M. Lalonde, M. Le-Khac, D. M. Jones, J. R. Courter, J. Park, A. Schön, A. M. Princiotto, X. Wu, J. R. Mascola, E. Freire, J. Sodroski, N. Madani, W. A. Hendrickson, Smith A. B. III, “Structure-based design and synthesis of an HIV-1 entry inhibitor exploiting X-ray and thermodynamic characterization”, ACS Med. Chem. Lett, 4 (2013), 338–343 | DOI

[31] J. R. Courter, N. Madani, J. Sodroski, A. Schön, E. Freire, P. D. Kwong, W. A. Hendrickson, I. M. Chaiken, J. M. LaLonde, Smith A. B. III, “Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: Conversion of a viral entry agonist to an antagonist”, Acc. Chem. Res., 47 (2014), 1228–1237 | DOI

[32] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, “Open Babel: An open chemical toolbox”, Journal of Cheminformatics, 3 (2011)

[33] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, W. M. Skiff, “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations”, J. Am. Chem. Soc., 114 (1992), 10024–10035 | DOI

[34] J. J. P. Stewart, “Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters”, J. Mol. Model., 19 (2013), 1–32 | DOI

[35] J. J. P. Stewart, MOPAC2016. Colorado Springs: Stewart Computational Chemistry, 2016 (data obrascheniya: 20.09.2019) http://OpenMOPAC.net

[36] A. Klamt, G. Schüürmann, “COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient”, J. Chem. Soc. Perkin Trans., 2 (1993), 799–805 | DOI

[37] A. Klamt, From quantum chemistry to fluid phase thermodynamics and drug design, Boston, MA, USA, 2005

[38] A. Klamt, C. Moya, J. Palomar, “A comprehensive comparison of the IEFPCM and SS(V)PE continuum solvation methods with the COSMO approach”, J. Chem. Theory Comput., 11 (2015), 4220–4225 | DOI

[39] I. M. Høyvik, B. Jansik, P. Jørgensen, “Trust region minimization of orbital localization functions”, J. Chem. Theory Comput., 8 (2012), 3137–3146 | DOI

[40] S. Lehtola, H. Jónsson, “Unitary optimization of localized molecular orbitals”, J. Chem. Theory Comput., 9 (2013), 5365–5372 | DOI

[41] J. D. Durrant, J. A. McCammon, “BINANA: A novel algorithm for ligand-binding characterization”, J. Mol. Graph. Model, 29 (2011), 888–893 | DOI

[42] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, “UCSF Chimera a visualization system for exploratory research and analysis”, J. Comput. Chem., 25:13 (2004), 1605–1612 | DOI

[43] I. K. McDonald, J. M. Thornton, “Satisfying hydrogen bonding potential in proteins”, J. Mol. Biol., 238 (1994), 777–793 | DOI

[44] D. A. Case, R. M. Betz, D. S. Cerutti, T. E. Cheatham, T. A. Darden III, R. E. Duke, T. J. Giese, H. Gohlke, A. W. Goetz, N. Homeyer et al, AMBER 2016, University of California, San Francisco, 2016

[45] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, “Comparison of simple potential functions for simulating liquid water”, J. Chem. Phys., 79 (1983), 926–935 | DOI

[46] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, “Development and testing of a general Amber force field”, J. Comput. Chem., 25 (2004), 1157–1174 | DOI

[47] H. Sun, Y. Li, S. Tian, L. Xu, T. Hou, “Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set”, Phys. Chem. Chem. Phys., 16 (2014), 16719–16729 | DOI

[48] L. Xu, H. Sun, Y. Li, J. Wang, T. Hou, “Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models”, J. Phys. Chem. B, 117 (2013), 8408–8421 | DOI

[49] H. Sun, Y. Li, M. Shen, S. Tian, L. Xu, P. Pan, Y. Guan, T. Hou, “Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring”, Phys. Chem. Chem. Phys., 16 (2014), 22035–22045 | DOI

[50] J. P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, “Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes”, J. Comput. Phys., 23 (1977), 327–341 | DOI

[51] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, “A smooth particle mesh Ewald method”, J. Chem. Phys., 103 (1995), 8577–8593 | DOI

[52] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, D. E. Shaw, “Improved side-chain torsion potentials for the Amber ff99SB protein force field”, Proteins, 78 (2010), 1950–1958 | DOI

[53] Kwong P.D, R. Wyatt, J. Robinson, R. W. Sweet, J. Sodroski, W. A. Hendrickson, “Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody”, Nature, 393 (1998), 648–659 | DOI

[54] Y. Liu, A. Schön, E. Freire, “Optimization of CD4/gp120 inhibitors by thermodynamicguided alanine-scanning mutagenesis”, Chem. Biol. Drug Des., 81 (2013), 72–78 | DOI

[55] U. Moebius, L. K. Clayton, S. Abraham, S. C. Harrison, E. L. Reinherz, “The human immunodeficiency virus-gp120 binding-site on CD4 Delineation by quantitative equilibrium and kinetic binding studies of mutants in conjunction with a high-resolution CD4 atomic-structure”, J. Exp. Med, 176 (1992), 507–517 | DOI

[56] U. Olshevsky, E. Helseth, C. Furman, J. Li, W. Haseltine, J. Sodroski, “Identification of individual human-immunodeficiency-virus type-1 gp120 amino-acids important for CD4 receptor-binding”, J. Virol., 64 (1990), 5701–5707 | DOI

[57] J. D. Durrant, J. A. McCammon, “NNScore 2.0: A neural-network receptor-ligand scoring function”, J. Chem. Inf. Model., 51 (2011), 2897–2903 | DOI

[58] G. Sharma, E. A. First, “Thermodynamic Analysis Reveals a Temperature-dependent Change in the Catalytic Mechanism of Bacillus stearothermophilus Tyrosyl-tRNA Synthetase”, J. Biol. Chem., 284 (2009), 4179–4190 | DOI

[59] A. S. Christensen, T. Kubař, Q. Cui, M. Elstner, “Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications”, Chem. Rev., 116:9 (2016), 5301–5337 | DOI

[60] A. V. Sulimov, D. C. Kutov, E. V. Katkova, V. B. Sulimov, “Combined docking with classical force field and quantum chemical semiempirical method PM7”, Adv. Bioinformatics, 5 (2017), 1–6 | DOI

[61] M. Le-Khac, Structure-based design of small molecule inhibitors of HIV-1 entry, Doctoral Thesis, Columbia University, 2013 | DOI

[62] D. G. Myszka, R. W. Sweet, P. Hensley, M. Brigham-Burke, P. D. Kwong, W. A. Hendrickson, R. Wyatt, J. Sodroski, M. L. Doyle, “Energetics of the HIV gp120-CD4 binding reaction”, Proc. Natl. Acad. Sci. USA, 97 (2000), 9026–9031 | DOI