Spectral and spatial characteristics of the activity of brain structures, participating in the perception and production of speech
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 705-719.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spectral and spatial characteristics of the encephalograms, registered while speech perception and production, are considered. Systematical bibliographical review is presented, including the articles studying the speech sources spectra and their location in the brain. Encephalography is selected as a basic experimental approach. Advantages of the magnetic encephalography, experimental difficulties and possible artifacts are noted. It is concluded that brain speech activity possesses a great variety of spectral and spatial features. The method of functional tomography based on magnetic encephalography data is proposed to quantitatively analyze this activity in detail. The method makes it possible to extract and precisely localize in space various spectral features of the brain activity studied in experiments on speech research.
@article{MBB_2019_14_2_a5,
     author = {N. M. Pankratova and M. A. Polikarpov and E. F. Tarasov and S. D. Rykunov and M. N. Ustinin},
     title = {Spectral and spatial characteristics of the activity of brain structures, participating in the perception and production of speech},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {705--719},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a5/}
}
TY  - JOUR
AU  - N. M. Pankratova
AU  - M. A. Polikarpov
AU  - E. F. Tarasov
AU  - S. D. Rykunov
AU  - M. N. Ustinin
TI  - Spectral and spatial characteristics of the activity of brain structures, participating in the perception and production of speech
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 705
EP  - 719
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a5/
LA  - ru
ID  - MBB_2019_14_2_a5
ER  - 
%0 Journal Article
%A N. M. Pankratova
%A M. A. Polikarpov
%A E. F. Tarasov
%A S. D. Rykunov
%A M. N. Ustinin
%T Spectral and spatial characteristics of the activity of brain structures, participating in the perception and production of speech
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 705-719
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a5/
%G ru
%F MBB_2019_14_2_a5
N. M. Pankratova; M. A. Polikarpov; E. F. Tarasov; S. D. Rykunov; M. N. Ustinin. Spectral and spatial characteristics of the activity of brain structures, participating in the perception and production of speech. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 705-719. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a5/

[1] P. Eling, “Broca on the relation between handedness and cerebral speech dominance”, Brain and language, 22:1 (1984), 158–159 | DOI

[2] P. Broca, “Remarks on the seat of the faculty of articulated language, following an observation of aphemia (loss of speech)”, Bulletin de la Société Anatomique, 6 (1861), 330–357

[3] N. Geschwind, “Carl Wernicke, the Breslau School and the history of aphasia”, Selected papers on language and the brain, Springer Netherlands, 1974, 42–61 | DOI

[4] N. I. Chuprikova, “Differentsionno-integratsionnaya teoriya razvitiya kak osnova resheniya problemy sootnosheniya yazyka i myshleniya”, Differentsionnointegratsionnaya teoriya razvitiya, v. 2, 2017, 165–190

[5] R. Naatanen, P. Paavilainen, H. Tiitinen, D. Jiang, K. Alho, “Attention and MMN”, Psychophysiology, 30 (1993), 436–450 | DOI

[6] Yu. D. Kropotov, Kolichestvennaya EEG, kognitivnye VP mozga cheloveka i neiroterapiya, Donetsk, 2010, 512 pp.

[7] E. V. Revenok, V. V. Gnezditskii, O. S. Korepina, “Vyzvannye potentsialy v otsenke stareniya i dementsii”, Opyt primeneniya vyzvannykh potentsialov v klinicheskoi praktike, eds. V. V. Gnezditskii, A. M. Shamshinov, AOZTAntidor, M., 2001, 160–182

[8] D. Cohen, “Magnetoencephalography: evidence of magnetic fields produced by alpharhythm currents”, Science, 161 (1968), 784–786 | DOI

[9] H. Berger, “Uber das Elektrenkephalogramm des Menschen”, Arch. Psychiat. Nervenkr., 7 (1929), 527–570 | DOI

[10] J. Vrba, S. E. Robinson, “Signal Processing in Magnetoencephalography”, Methods, 25 (2001), 249–271 | DOI

[11] S. Baillet, “MEG for Brain Electrophysiology Imaging”, Nature Neuroscience, 20 (2017), 327–339 | DOI

[12] G. Mollo, P. L. Cornelissen, R. E. Millman, A. W. Ellis, E. Jefferies, “Oscillatory Dynamics Supporting Semantic Cognition: MEG Evidence for the Contribution of the Anterior Temporal Lobe Hub and Modality-Specific Spokes”, PLoS ONE, 12:1 (2017) | DOI

[13] S. Dikker, L. Pylkkänen, “Predicting language: MEG evidence for lexical preactivation”, Brain Language, 127 (2013), 55–64 | DOI

[14] R. Salmelin, “Clinical neurophysiology of language: the MEG approach”, Clin Neurophysiol, 118:2 (2007), 237–254 | DOI

[15] L. Y. Ganushchak, I. K. Christoffels, N. O. Schiller, “The use of electroencephalography in language production research: a review”, Front. Psychology, 2 (2011), 208 | DOI

[16] V. Piai, S. K. Ries, R. T. Knight, “The electrophysiology of language production: what could be improved”, Front. Psychol, 5 (2015), 1560 | DOI

[17] E. W. Pang, F. Wang, M. Malone, D. S. Kadis, E. J. Donner, “Localization of Broca's area using verb generation tasks in the MEG: Validation against fMRI”, Neurosci. Lett., 490:3 (2011), 215–219 | DOI

[18] D. S. Kadis, E. W. Pang, T. Mills, M. J. Taylor, M. P. McAndrews, M. L. Smith, “Characterizing the Normal Developmental Trajectory of Expressive Language Lateralization Using Magnetoencephalography”, Journal of the International Neuropsychological Society, 17 (2011), 896–904 | DOI

[19] V. Y. Yu, L. F. De Nil, M. J. MacDonald, A. Oh, G. N. Hua, E. W. Pang, “Age-Related Sex Differences in Language Lateralization: A Magnetoencephalography Study in Children”, Developmental Psychology, 50:9 (2014), 2276–2284 | DOI

[20] D. S. Kadis, A. Dimitrijevic, C. A. Toro-Serey, M. L. Smith, S. K. Holland, “Characterizing Information Flux Within the Distributed Pediatric Expressive Language Network: A Core Region Mapped Through fMRI-Constrained MEG Effective Connectivity Analyses”, Brain Connectivity, 6:1 (2016) | DOI

[21] R. Rezaie, S. Narayana, K. Schiller, L. Birg, J. W. Wheless, F. A. Boop, A. C. Papanicolaou, “Assessment of hemispheric dominance for receptive language in pediatric patients under sedation using magnetoencephalography”, Frontiers in Human Neuroscience, 8 (2014), 657 | DOI

[22] M. Wilke, T. K. Hauser, I. Krageloh-Mann, K. Lidzba, “Specific impairment of functional connectivity between language regions in former early preterms”, Hum. Brain Mapp, 35 (2014), 3372–3384 | DOI

[23] M. E. Barnes-Davis, S. L. Merhar, S. K. Holland, D. S. Kadis, “Extremely preterm children exhibit increased interhemispheric connectivity for language: findings from fMRI-constrained MEG analysis”, Developmental Science, 21 (2018), e12669 | DOI

[24] V. Youssofzadeh, B. J. Williamson, D. S. Kadis, “Mapping Critical Language Sites in Children Performing Verb Generation: Whole-Brain Connectivity and Graph Theoretical Analysis in MEG”, Frontiers in Human Neuroscience, 11 (2017), 173 | DOI

[25] A. Kielar, L. Panamsky, K. A. Links, J. A. Meltzer, “Localization of electrophysiological responses to semantic and syntactic anomalies in language comprehension with MEG”, NeuroImage, 105 (2015), 507–524 | DOI

[26] J. Brennan, L. Pylkkänen, “The time-course and spatial distribution of brain activity associated with sentence processing”, NeuroImage, 60 (2012), 1139–1148 | DOI

[27] B. Herrmann, B. Maess, A. Hahne, E. Schr-ger, A. D. Friederici, “Syntactic and auditory spatial processing in the human temporal cortex: An MEG study”, NeuroImage, 57:2 (2011), 624–633 | DOI

[28] L. Pylkkänen, D. K. Bemis, E. B. Elorrieta, “Building phrases in language production: An MEG study of simple composition”, Cognition, 133 (2014), 371–384 | DOI

[29] A. Williams, S. Reddigari, L. Pylkkänen, “Early sensitivity of left perisylvian cortex to relationality in nouns and verbs”, Neuropsychologia, 100 (2017), 131–143 | DOI

[30] A. J. Newman, T. Supalla, P. Hauser, E. L. Newport, D. Bavelier, “Dissociating neural subsystems for grammar by contrasting word order and inflection”, PNAS, 107:16 (2010), 7539–7544 | DOI

[31] E. Blanco-Elorrieta, L. Pylkkänen, “Bilingual Language Switching in the Laboratory versus in the Wild: The Spatiotemporal Dynamics of Adaptive Language Control”, J. Neurosci, 13 (2017), 37

[32] E. Blanco-Elorrieta, L. Pylkkänen, “Bilingual Language Control in Perception versus Action: MEG Reveals Comprehension Control Mechanisms in Anterior Cingulate Cortex and Domain-General Control of Production in Dorsolateral Prefrontal Cortex”, Journal of Neuroscience, 36:2 (2016), 290–301 | DOI | MR

[33] E. Blanco-Elorrieta, L. Pylkkänen, “Brain bases of language selection: MEG evidence from Arabic-English bilingual language production”, Front Hum Neurosci, 9 (2015), 27 | DOI

[34] P. Hagoort, “The fractionation of spoken language understanding by measuring electrical and magnetic brain signals”, Philosophical Transactions of the Royal Society B: Biological Sciences, 363:1493 (2008), 1055–1069 | DOI

[35] Z. Zhu, M. Bastiaansen, J. G. Hakun, K. M. Petersson, S. Wang, P. Hagoort, “Semantic unification modulates N400 and BOLD signal change in the brain: A simultaneous EEGfMRI study”, Journal of Neurolinguistics, 52 (2019), 100855 | DOI

[36] P. M. Alday, “M/EEG analysis of naturalistic stories: a review from speech to language processing”, Language, Cognition and Neuroscience, 34:4 (2019), 457–473 | DOI

[37] M. P. Broderick, A. J. Anderson, G. M. di Liberto, M. J. Crosse, E. C. Lalor, “Electrophysiological Correlates of Semantic Dissimilarity Reflect the Comprehension of Natural, Narrative Speech”, Current Biology, 28 (2018), 803–809 | DOI

[38] B. E. Murdoch, “The cerebellum and language: Historical perspective and review”, Cortex, 46 (2010), 858–868 | DOI

[39] Y. Shtyrov, F. Pulvermüller, “Early MEG activation dynamics in the left temporal and inferior frontal cortex reflect semantic context integration”, Journ. Cogn. Neurosci, 19 (2007), 1633–1642 | DOI

[40] Y. Shtyrov, “Automaticity and attentional control in spoken language processing: neurophysiological evidence”, Mental Lexicon, 5 (2010), 255–276 | DOI

[41] Y. Shtyrov, T. Kujala, F. Pulvermüller, “Interactions between language and attention systems: early automatic lexical processing”, J. Cogn. Neurosci, 22 (2010), 1465–1478 | DOI

[42] Y. Shtyrov, A. Butorina, A. Nikolaeva, T. Stroganova, “Automatic ultrarapid activation and inhibition of cortical motor systems in spoken word comprehension”, PNAS, 111:18 (2014), E1918–E1923 | DOI

[43] G. Mollo, F. Pulvermuller, O. Hauk, “Movement priming of EEG/MEG brain responses for action-words characterizes the link between language and action”, Cortex, 74 (2016), 262–276 | DOI

[44] A. Shestakova, E. Brattico, M. Huotilainen, V. Galunov, A. Soloviev, M. Sams, R. J. Ilmoniemi, R. Näätänen, “Abstract phoneme representations in the left temporal cortex: magnetic mismatch negativity study”, NeuroReport, 13 (2002), 1813–1816 | DOI

[45] A. L. Giraud, D. Poeppel, “Cortical oscillations and speech processing: emerging computational principles and operations”, Nature neuroscience, 15 (2012), 511–517 | DOI

[46] A. A. Nistratov, T. V. Semina, E. F. Tarasov, “Semanticheskie kharakteristiki vospriyatiya izobrazhenii i ikh opisanii”, Voprosy psikholingvistiki, 29 (2016), 176–178

[47] R. R. Llinäs, M. N. Ustinin, Precise Frequency-Pattern Analysis to Decompose Complex Systems into Functionally Invariant Entities \date 01/14/2016, U.S. Patent. US Patent App. Publ. 20160012011 A1

[48] R. R. Llinäs, M. N. Ustinin, “Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization”, Front. Neural Circuits, 8 (2014), 43 | DOI

[49] R. R. Llinäs, M. N. Ustinin, S. D. Rykunov, A. I. Boyko, V. V. Sychev, K. D. Walton, G. M. Rabello, J. Garcia, “Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data”, Front. Neurosci, 9 (2015) | DOI

[50] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, E. Moulines, “A blind source separation technique using second-order statistics”, IEEE Trans. Signal Processing, 45 (1997), 434–444 | DOI

[51] J. Sarvas, “Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem”, Phys. Med. Biol, 32:1 (1987), 11–22 | DOI