Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_2_a4, author = {I. V. Dorovskih and O. V. Sen'ko and V. Ya. Chuchupal and A. A. Dokukin and A. V. Kuznetsova}, title = {On possibility of machine learning application for diagnosing dementia by {EEG} signals}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {543--553}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a4/} }
TY - JOUR AU - I. V. Dorovskih AU - O. V. Sen'ko AU - V. Ya. Chuchupal AU - A. A. Dokukin AU - A. V. Kuznetsova TI - On possibility of machine learning application for diagnosing dementia by EEG signals JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 543 EP - 553 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a4/ LA - ru ID - MBB_2019_14_2_a4 ER -
%0 Journal Article %A I. V. Dorovskih %A O. V. Sen'ko %A V. Ya. Chuchupal %A A. A. Dokukin %A A. V. Kuznetsova %T On possibility of machine learning application for diagnosing dementia by EEG signals %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 543-553 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a4/ %G ru %F MBB_2019_14_2_a4
I. V. Dorovskih; O. V. Sen'ko; V. Ya. Chuchupal; A. A. Dokukin; A. V. Kuznetsova. On possibility of machine learning application for diagnosing dementia by EEG signals. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 543-553. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a4/
[1] S. I. Gavrilova, Psikhicheskie rasstroistva v naselenii pozhilogo i starcheskogo vozrasta (kliniko-statisticheskoe i kliniko-epidemiologicheskoe issledovanie), diss. dokt. med. nauk, M., 1984
[2] S. I. Gavrilova, Ya. B. Kalyn, “Sotsialno-sredovye faktory i sostoyanie psikhicheskogo zdorovya pozhilogo naseleniya”, Vestnik Ros. AMN, 2002, no. 9, 15–20
[3] S. I. Gavrilova, Farmakoterapiya bolezni Altsgeimera, Puls, M., 2007, 306 pp.
[4] O. V. Bozhko, N. M. Mikhailova, N. Yu. Savvateeva, “Kliniko-tomograficheskie korrelyatsii smeshannykh dementsii altsgeimerovsko-sosudistogo geneza”, Pisikhiatriya, 46:4 (2010), 12–20
[5] E. Kokmen, V. Chandra, B. S. Schoenberg, “Trends in incidence of dementing illness in Rochester, Minnesota, in three quinquennial periods, 1960-1974”, Neurology, 38 (1988), 975–980 | DOI
[6] A. Lowin, M. Knapp, P. McCrone, “Alzheimer's disease in the UK: comparative evidence on cost of illness and volume of health services research funding”, Int. J. Geriatr. Psychiatry, 16 (2001), 1143–1148 | DOI
[7] J. Leon, P. J. Neumann, “The cost of Alzgeimer's disease in managed care: a cross-sectional study”, Am. J. Manag. Care, 5 (1999), 867–877
[8] N. Houmani, F. Vialette, E. Gallego-Jutgla, G. Dreyfus, V. H. Nguen-Michel, J. Mariani, K. Kinugawa, “Diagnosis of Alzheimer's disease with Electroencephalography in differential framework”, PLoS ONE, 13:3 (2018), e0193607 | DOI
[9] G. Fiscon, E. Weitschek, A. Cialini, G. Felici, P. Bertolazzi, S. De Salvo, P. Bramanti, M. C. De Cola, “Combining EEG signal processing with supervised methods for Alzheimer's patients classification”, BMC Med. Inform. Decis. Mak., 18:1 (2018), 35 | DOI
[10] S. Simpraga, R. Alvarez-Jimenez, H. D. Mansvelder, J. M. A. van Gerven, G. J. Groenveld, S. S. Poil, K. LinkenKaer-Hansen, “EEG Machine learning for accurate detection of cholinergic intervention and Alzheimer's disease”, SciRep, 7:1 (2017), 5775
[11] J. S. Cramer, “The early origins of the logit model”, Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 35:4 (2004), 613–626 | DOI
[12] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain”, Cornell Aeronautical Laboratory, Psychological Review, 65:6 (1958), 386–408 | MR
[13] C. Cortes, V. Vapnik, “Support-vector networks”, Mach. Learn., 20:3 (1995), 273–297 | Zbl
[14] L. Breiman, “Random Forests”, Machine Learning, 45:1 (2001), 5–32 | DOI | MR | Zbl
[15] Y. Freund, R. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting”, Journal of Computer and System Sciences, 55 (1997), 119–139 | DOI | MR | Zbl
[16] J. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine”, The Annals of Statistics, 29:5 (2001), 1189–1232 | DOI | MR | Zbl
[17] V. V. Ryazanov, “Logicheskie zakonomernosti v zadachakh raspoznavaniya (parametricheskii podkhod)”, Zh. vychisl. matem. i matem. fiz., 47:10 (2007), 1793–1808 | MR
[18] V. A. Kuznetsov, O. V. Senko, A. V. Kuznetsova, L. P. Semenova, A. V. Aleschenko, T. B. Gladysheva, A. V. Ivshina, “Raspoznavanie nechetkikh sistem po metodu statisticheski vzveshennykh sindromov i ego primenenie dlya immunogematologicheskoi kharakteristiki normy i khronicheskoi patologii”, Khim. fizika, 15:1 (1996), 81–100
[19] K. Spackman, “Signal detection theory: Valuable tools for evaluating inductive learning”, Proceedings of the Sixth International Workshop on Machine Learning, Morgan Kaufmann, San Mateo, CA, 1989, 160–163 | DOI | MR
[20] H. Mann, D. Whitney, “On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other”, Annals of Mathematical Statistics, 18:1 (1947), 50–60 | DOI | MR | Zbl