Study of attention deficit and hyperactivity disorder using the method of functional tomography based on magnetic encephalography data
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 517-532.

Voir la notice de l'article provenant de la source Math-Net.Ru

New method for the magnetic encephalography data analysis was proposed, making it possible to transform multichannel time series into the spatial structure of the human brain activity. In this paper we applied this method to the analysis of magnetic encephalograms, obtained from subjects with attention deficit and hyperactivity disorder. We have considered the experimental data, obtained with 275-channel magnetic encephalographs in McGill University and Montreal University. Magnetic encephalograms of the brain spontaneous activity were registered for 5 minutes in magnetically shielded room. Detailed multichannel spectra were obtained by the Fourier transform of the whole time series. For all spectral components, the inverse problem was solved in elementary current dipole model and the functional structure of the brain activity was calculated in the broad frequency band 0.3-50 Hz. It was found that frequency band relations are different in different experiments. We proposed to use these relations by the summary electric power produced by the sources in selected frequency band. The delta rhythm in frequency band 0.3 to 4 Hz was studied in detail. It was found, that many delta rhythm dipoles were localized outside the brain, and their spectrum consists of the heartbeat harmonics. It was concluded that in experiments considered, the delta rhythm represents the vascular activity of the head. To study the spatial distribution of all rhythms from theta to gamma the partial spectra of the brain divisions were calculated. The partial spectrum includes all frequencies produced by the dipole sources located in the region of brain selected at the magnetic resonance image. The method can be further applied to study encephalograms in various psychic disorders.
@article{MBB_2019_14_2_a3,
     author = {M. N. Ustinin and S. D. Rykunov and A. I. Boyko and O. A. Maslova and N. M. Pankratova},
     title = {Study of attention deficit and hyperactivity disorder using the method of functional tomography based on magnetic encephalography data},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {517--532},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a3/}
}
TY  - JOUR
AU  - M. N. Ustinin
AU  - S. D. Rykunov
AU  - A. I. Boyko
AU  - O. A. Maslova
AU  - N. M. Pankratova
TI  - Study of attention deficit and hyperactivity disorder using the method of functional tomography based on magnetic encephalography data
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 517
EP  - 532
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a3/
LA  - ru
ID  - MBB_2019_14_2_a3
ER  - 
%0 Journal Article
%A M. N. Ustinin
%A S. D. Rykunov
%A A. I. Boyko
%A O. A. Maslova
%A N. M. Pankratova
%T Study of attention deficit and hyperactivity disorder using the method of functional tomography based on magnetic encephalography data
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 517-532
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a3/
%G ru
%F MBB_2019_14_2_a3
M. N. Ustinin; S. D. Rykunov; A. I. Boyko; O. A. Maslova; N. M. Pankratova. Study of attention deficit and hyperactivity disorder using the method of functional tomography based on magnetic encephalography data. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 517-532. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a3/

[1] American academy of pediatrics, “Clinical practical guideline: diagnosis and evaluation of the child with attention deficit / hyperactivity disorder”, Pediatrics, 105 (2000), 1158–1170 | DOI

[2] A. Sáenz, T. Villemonteix, I. Isabelle Massat, “Structural and functional neuroimaging in attention-deficit/hyperactivity disorder”, Developmental Medicine Child Neurology, 61:4 (2019), 399–405 | DOI

[3] N. L. Gorbachevskaya, N. N. Zavadenko, L. P. Yakupova, A. B. Sorokin, N. Yu. Suvorinova, N. V. Grigoreva, T. V. Sokolova, “Elektrofiziologicheskoe issledovanie detskoi giperaktivnosti”, Fiziologiya cheloveka, 22:5 (1996), 49–56

[4] A. R. Clarke, Barry R.J, S. J. Johnstone, R. McCarthy, M. Selikowitz, “EEG development in Attention Deficit Hyperactivity Disorder: From child to adult”, Clinical Neurophysiology, 130 (2019), 1256–1262 | DOI

[5] American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders (DSM-5), American Psychiatric Publishing, Arlington, VA, 2013, 87–122

[6] G. S. Pilina, N. A. Shnaider, “Sindrom defitsita vnimaniya s giperaktivnostyu”, Sibirskoe meditsinskoe obozrenie, 1 (2017), 107–114 | DOI

[7] M. Liechti, L. Valko, U. Muller, M. Dohnert, R. Drechsler, H. Steinhausen, D. Brandeis, “Diagnostic value of resting electroencephalogram in attention-deficit/ hyperactivity disorder across the lifespan”, Brain Topogr, 26 (2013), 135–151 | DOI

[8] A. Lau-Zhu, A. Fritz, G. McLoughlin, “Overlaps and distinctions between attention deficit/hyperactivity disorder and autism spectrum disorder in young adulthood: Systematic review and guiding framework for EEG-imaging research”, Neuroscience and Biobehavioral Reviews, 96 (2019), 93–115 | DOI

[9] R. Barry, A. Clarke, S. Johnstone, R. McCarthy, M. Selikowitz, “Electroencephalogram theta/beta ratio and arousal in AD/HD: evidence of independent processes”, Biol. Psychiatry, 66 (2009), 398–401 | DOI

[10] R. Barry, A. Clarke, S. Johnstone, R. McCarthy, M. Selikowitz, B. MacDonald, F. Dupuy, “Caffeine effects on resting-state electrodermal levels in AD/HD suggest an anomalous arousal mechanism”, Biol. Psychol., 89 (2012), 606–608 | DOI

[11] A. R. Clarke, R. J. Barry, R. McCarthy, M. Selikowitz, C. A. Magee, S. J. Johnstone, R. J. Croft, “Quantitative EEG in low IQ children with attention-deficit/hyperactivity disorder”, Clin. Neurophysiol., 117 (2006), 1708–1714 | DOI

[12] J. Lubar, “Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders”, Biofeedback Self Regul, 16 (1991), 201–225 | DOI

[13] J. J. Schulman, R. Cancro, S. Lowe, F. Lu, K. D. Walton, R. R. Llinas, “Imaging of thalamocortical dysrhythmia in neuropsychiatry”, Frontiers in Human Neuroscience, 5 (2011), 69 | DOI

[14] N. M. Pankratova, S. D. Rykunov, A. I. Boiko, D. A. Molchanova, M. N. Ustinin, “Lokalizatsiya spektralnykh osobennostei entsefalogramm pri psikhicheskikh rasstroistvakh”, Matematicheskaya biologiya i bioinformatika, 13:2 (2018), 322–336 | DOI

[15] R. R. Llinás, M. N. Ustinin, Precise Frequency-Pattern Analysis to Decompose Complex Systems into Functionally Invariant Entities \date 01/14/2016, U.S. Patent. US Patent App. Publ. 20160012011 A1

[16] R. R. Llinás, M. N. Ustinin, “Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization”, Front. Neural Circuits, 8 (2014) | DOI

[17] R. R. Llinás, M. N. Ustinin, S. D. Rykunov, A. I. Boyko, V. V. Sychev, K. D. Walton, G. M. Rabello, J. Garcia, “Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data”, Front. Neurosci, 9 (2015) | DOI

[18] R. Llinás, U. Ribary, D. Jeanmonod, E. Kronberg, P. Mitra, “Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography”, Proceedings of the National Academy of Sciences of the United States of America, 96 (1999), 15222–15227 | DOI

[19] W. Andra, H. Nowak (eds.), Magnetism in medicine: a handbook, Wiley-VCH, 2007, 630 pp. | DOI

[20] D. Cohen, U. Schlapfer, S. Ahlfors, M. Hamalainen, E. Halgren, “New Six-Layer Magnetically Shielded Room for MEG”, Biomag 2002, Proceedings of 13th International Conference on Biomagnetism (Berlin, 2002), 919–921

[21] J. Bork, H. D. Hahlbohm, R. Klein, A. Schnabel, “The 8-layered magnetically shielded room of the PTB: Design and construction”, Biomag 2000, Proceedings of 12th International Conference on Biomagnetism, Springer, 2000

[22] M. N. Ustinin, S. D. Rykunov, A. I. Boiko, O. A. Maslova, K. D. Volton, R. R. Linas, “Otsenka napravlenii elementarnykh istochnikov alfa-ritma metodom funktsionalnoi tomografii mozga cheloveka po dannym magnitnoi entsefalografii”, Matematicheskaya biologiya i bioinformatika, 13:2 (2018), 426–436 | DOI

[23] J. Sarvas, “Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem”, Phys. Med. Biol., 32:1 (1987), 11–22 | DOI

[24] G. Niso, C. Rogers, J. T. Moreau, L. Y. Chen, C. Madjar, S. Das, E. Bock, F. Tadel, A. Evans, P. Jolicoeur, S. Baillet, “OMEGA: The Open MEG Archive”, Neuroimage, 124 (2015), 1182–1187 | DOI

[25] E. B. J. Coffey, S. C. Herholz, S. Scala, R. J. Zatorre, Montreal Music History Questionnaire: a tool for the assessment of music-related experience, Presented at the The Neurosciences and Music IV: Learning and Memory Conference (Edinburgh, UK, 2011)

[26] M. N. Ustinin, V. V. Sychev, K. D. Walton, R. R. Llinás, “New Methodology for the Analysis and Representation of Human Brain Function: MEGMRIAn”, Mathematical Biology and Bioinformatics, 9:2 (2014), 464–481 | DOI

[27] J. McCubbin, J. Vrba, P. Spear, D. McKenzie, R. Willis, R. Loewen, S. E. Robinson, A. A. Fife, “Advanced electronics for the CTF MEG system”, Neurol. Clin. Neurophysiol, 2004 (2004), 69

[28] M. Frigo, S. G. Johnson, “The Design and Implementation of FFTW3”, Proceedings of the IEEE, 93:2 (2005), 216–231 | DOI

[29] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, E. Moulines, “A blind source separation technique using second-order statistics”, IEEE Trans. Signal Processing, 45 (1997), 434–444 | DOI

[30] S. D. Rykunov, M. N. Ustinin, A. G. Polyanin, V. V. Sychev, R. R. Linas, “Kompleks programm dlya rascheta partsialnykh spektrov golovnogo mozga cheloveka”, Matematicheskaya biologiya i bioinformatika, 11:1 (2016), 127–140 | DOI

[31] B. Fischl, “Automatically Parcellating the Human Cerebral Cortex”, Cereb. Cortex, 14:1 (2004), 11–22 | DOI

[32] R. S. Desikan, F. Ségonne, B. Fischl, B. T. Quinn, B. C. Dickerson, D. Blacker, R. L. Buckner, A. M. Dale, R. P. Maguire, B. T. Hyman, M. S. Albert, R. J. Killiany, “An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest”, Neuroimage, 31:3 (2006), 968–980 | DOI

[33] B. Fischl, D. H. Salat, A. J.W. Van Der Kouwe, N. Makris, F. Ségonne, B. T. Quinn, A. M. Dale, “Sequence-independent segmentation of magnetic resonance images”, Neuroimage, 23:1 (2004), 69–84