Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_2_a21, author = {S. A. Lobov}, title = {Generalized memory of {STDP-driven} spiking neural network}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {649--664}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a21/} }
S. A. Lobov. Generalized memory of STDP-driven spiking neural network. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 649-664. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a21/
[1] K. V. Anokhin, “Mozg i pamyat: biologiya sledov proshedshego vremeni”, Vestnik Rossiiskoi akademii nauk, 80:5-6 (2010), 455–461
[2] J. L.C. Lee, “Reconsolidation: maintaining memory relevance”, Trends Neurosci, 32:8 (2009), 413–420 | DOI
[3] S. H. Wang, R. G.M. Morris, “Hippocampal-Neocortical Interactions in Memory Formation, Consolidation, and Reconsolidation”, Annu. Rev. Psychol. Annual Reviews, 61:1 (2009), 49–79 | DOI
[4] L. Schwabe, K. Nader, J. C. Pruessner, “Reconsolidation of Human Memory: Brain Mechanisms and Clinical Relevance”, Biol. Psychiatry, 76:4 (2014), 274–280 | DOI
[5] G. S. Snoddy, “Learning and stability: a psychophysiological analysis of a case of motor learning with clinical applications”, J. Appl. Psychol. US: American Psychological Association, 10:1 (1926), 1–36
[6] E. R. F. W. Crossman, “A theory of the acquisition of speed-skill”, Ergonomics, 2 (1959), 153–166 | DOI
[7] H. Ebbinghaus, Memory: A Contribution to Experimental Psychology, Teachers College, Columbia University, 1885
[8] E. R. Kandel, “The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses”, Science, 294:5544 (2001), 1030–1038 | DOI
[9] D. J. Bakkum, Z. C. Chao, S. M. Potter, “Spatio-temporal electrical stimuli shape behavior of an embodied cortical network in a goal-directed learning task”, J. Neural Eng., 5:3 (2008), 310 | DOI | MR
[10] G. Shahaf, S. Marom, “Learning in Networks of Cortical Neurons”, J. Neurosci., 21:22 (2001), 8782–8788 | DOI
[11] A. Pimashkin, I. Simonov A. Kastalskiy, E. Koryagina, I. Mukhina, V. Kazantsev, “Adaptive enhancement of learning protocol in hippocampal cultured networks grown on multielectrode arrays”, Front. Neural Circuits, 7 (2013), 87 | DOI
[12] I. Baruchi, E. Ben-Jacob, “Towards neuro-memory-chip: Imprinting multiple memories in cultured neural networks”, Phys. Rev. E, 75:5 (2007), 50901 | DOI
[13] D. A. Wagenaar, J. Pine, S. M. Potter, “An extremely rich repertoire of bursting patterns during the development of cortical cultures”, BMC Neurosci, 2006 | DOI
[14] E. Maeda, H. P. Robinson, A. Kawana, “The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons”, J. Neurosci., 15:10 (1995), 6834–6845 | DOI
[15] A. Pimashkin, I. Kastalskiy, A. Simonov, E. Koryagina, I. Mukhina, V. Kazantsev, “Spiking Signatures of Spontaneous Activity Bursts in Hippocampal Cultures”, Front. Comput. Neurosci, 2011 | DOI
[16] J. le Feber, J. Stegenga, W. L. C. Rutten, “The Effect of Slow Electrical Stimuli to Achieve Learning in Cultured Networks of Rat Cortical Neurons”, PLoS One, 5:1 (2010) | DOI
[17] R. Segev, Y. Shapira, M. Benveniste, E. Ben-Jacob, “Observations and modeling of synchronized bursting in two-dimensional neural networks”, Phys. Rev. E, 64:1 (2001), 11920 | DOI
[18] A. A. Degterev, M. S. Burtsev, “Issledovanie spontannoi aktivnosti v modeli neironalnoi kultury s dolgovremennoi plastichnostyu”, Matematicheskaya biologiya i bioinformatika, 10:1 (2015), 234–244 | DOI
[19] Z. C. Chao, D. J. Bakkum, D. A. Wagenaar, S. M. Potter, Neuroinform, 3 (2005), 263–280 | DOI
[20] F. Kawasaki, M. Stiber, “A simple model of cortical culture growth: burst property dependence on network composition and activity”, Biol. Cybern., 108:4 (2014), 423–443 | DOI | MR
[21] Z. C. Chao, D. J. Bakkum, S. M. Potter, “Region-specific network plasticity in simulated and living cortical networks: comparison of the center of activity trajectory (CAT) with other statistics”, J. Neural Eng., 4:3 (2007), 294–308 | DOI | MR
[22] G. Q. Bi, M. M. Poo, “Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type”, J. Neurosci, 18:24 (1998), 10464–10472 | DOI
[23] P. J. Sjöström, G. G. Turrigiano, S. B. Nelson, “Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity”, Neuron, 32:6 (2001), 1149–1164 | DOI
[24] S. Lobov, A. Simonov, I. Kastalskiy, V. Kazantsev, “Network response synchronization enhanced by synaptic plasticity”, Eur. Phys. J. Spec. Top., 225 (2016), 29–39 | DOI
[25] S. A. Lobov, M. O. Zhuravlev, V. A. Makarov, V. B. Kazantsev, “Noise Enhanced Signaling in STDP Driven Spiking-Neuron Network”, Math. Model. Nat. Phenom., 12 (2017), 109–124 | DOI | MR
[26] S. Lobov, K. Balashova, V. A. Makarov, V. Kazantsev, “Competition of Spike-Conducting Pathways in STDP Driven Neural Networks”, Proceedings of the 5th International Congress on Neurotechnology, Electronics and Informatics – NEUROTECHNIX, 2017, 15–21 | DOI | MR
[27] J. O'Keefe, L. Nadel, “Précis of O]Keefe Nadel's the hippocampus as a cognitive map”, Behav. Brain Sci, 2:4 (1979), 487–494 | DOI
[28] E. I. Moser, E. Kropff, M. B. Moser, “Place Cells, Grid Cells, and the Brain's Spatial Representation System”, Annu. Rev. Neurosci. Annual Reviews, 31:1 (2008), 69–89 | DOI
[29] Ya. B. Kazanovich, I. E. Mysin, “Kak zhivotnye orientiruyutsya v prostranstve? Kletki mesta i kletki reshetki”, Matematicheskaya biologiya i bioinformatika, 10:1 (2015), 88–115 | DOI
[30] R. Borisyuk, D. Chik, Y. Kazanovich, J. da Silva Gomes, “Spiking neural network model for memorizing sequences with forward and backward recall”, Biosystems, 112:3 (2013), 214–223 | DOI
[31] F. Ponulak, J. Hopfield, “Rapid, parallel path planning by propagating wavefronts of spiking neural activity”, Front. Comput. Neurosci, 7 (2013), 98 | DOI
[32] J. L. Krichmar, A. K. Seth, D. A. Nitz, J. G. Fleischer, G. M. Edelman, “Spatial navigation and causal analysis in a brain-based device modeling cortical-hippocampal interactions”, Neuroinformatics, 3:3 (2005), 197–221 | DOI
[33] E. M. Izhikevich, “Simple model of spiking neurons”, IEEE Trans. Neural Networks, 14:6 (2003), 1569–1572 | DOI | MR
[34] E. M. Izhikevich, Which model to use for cortical spiking neurons?, IEEE Trans. Neural Networks, 15:5 (2004), 1063–1070 | DOI
[35] M. Tsodyks, K. Pawelzik, H. Markram, “Neural networks with dynamic synapses”, Neural Comput., 10:4 (1998), 821–835 | DOI
[36] A. Morrison, M. Diesmann, W. Gerstner, “Phenomenological models of synaptic plasticity based on spike timing”, Biol. Cybern., 98:6 (2008), 459–478 | DOI | MR
[37] S. Song, K. D. Miller, L. F. Abbott, “Competitive Hebbian learning through spike-timingdependent synaptic plasticity”, Nat. Neurosci, 3 (2000), 919 | DOI
[38] E. M. Izhikevich, “Solving the distal reward problem through linkage of STDP and dopamine signaling”, Cereb. Cortex, 17:10 (2007), 2443–2452 | DOI
[39] Q. R. Quiroga, S. Panzeri, Principles of neural coding, CRC Press, Boca Raton, 2013, 623 pp. | DOI | MR
[40] P. S. Rosenbloom, “A cognitive odyssey: From the power law of practice to a general learning mechanism and beyond”, Tutor. Quant. Methods Psychol, 2:2 (2006), 43–51 | DOI
[41] R. B. Anderson, “The power law as an emergent property”, Mem. Cognit., 29:7 (2001), 1061–1068 | DOI
[42] J. M. J. Murre, A. G. Chessa, “Power laws from individual differences in learning and forgetting: mathematical analyses”, Psychon. Bull. Rev., 18:3 (2011), 592–597 | DOI