Generalized memory of STDP-driven spiking neural network
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 649-664.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a memory model based on the spiking neural network with Spike-Timing-Dependent Plasticity (STDP). In the model, information is recorded using local external stimulation. The memory decoding is a functional response in the form of population bursts of action potentials synchronized with the applied stimuli. In our model, STDP-mediated weights rearrangements are able to encode the localization of the applied stimulation, while the stimulation focus forms the source of the vector field of synaptic connections. Based on the characteristics of this field, we propose a measure of generalized network memory. With repeated stimulations, we can observe a decrease in time until synchronous activity occurs. In this case, the obtained average learning curve and the dependence of the generalized memory on the stimulation number are characterized by a power-law. We show that the maximum time to reach a functional response is determined by the generalized memory remaining as a result of previous stimulations. Thus, the properly learning curves are due to the presence of incomplete forgetting of previous influences. We study the reliability of generalized network memory, determined by the storage time of memory traces after the termination of external stimulation. The reliability depends on the level of neural noise, and this dependence is also power-law. We found that hubs – neurons that can initiate the generation of population bursts in the absence of noise – play a key role in maintaining generalized network memory. The inclusion of neural noise leads to the occurrence of random bursts initiated by neurons that are not hubs. This noise activity destroys memory traces and reduces the reliability of generalized network memory.
@article{MBB_2019_14_2_a21,
     author = {S. A. Lobov},
     title = {Generalized memory of {STDP-driven} spiking neural network},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {649--664},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a21/}
}
TY  - JOUR
AU  - S. A. Lobov
TI  - Generalized memory of STDP-driven spiking neural network
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 649
EP  - 664
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a21/
LA  - ru
ID  - MBB_2019_14_2_a21
ER  - 
%0 Journal Article
%A S. A. Lobov
%T Generalized memory of STDP-driven spiking neural network
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 649-664
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a21/
%G ru
%F MBB_2019_14_2_a21
S. A. Lobov. Generalized memory of STDP-driven spiking neural network. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 649-664. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a21/

[1] K. V. Anokhin, “Mozg i pamyat: biologiya sledov proshedshego vremeni”, Vestnik Rossiiskoi akademii nauk, 80:5-6 (2010), 455–461

[2] J. L.C. Lee, “Reconsolidation: maintaining memory relevance”, Trends Neurosci, 32:8 (2009), 413–420 | DOI

[3] S. H. Wang, R. G.M. Morris, “Hippocampal-Neocortical Interactions in Memory Formation, Consolidation, and Reconsolidation”, Annu. Rev. Psychol. Annual Reviews, 61:1 (2009), 49–79 | DOI

[4] L. Schwabe, K. Nader, J. C. Pruessner, “Reconsolidation of Human Memory: Brain Mechanisms and Clinical Relevance”, Biol. Psychiatry, 76:4 (2014), 274–280 | DOI

[5] G. S. Snoddy, “Learning and stability: a psychophysiological analysis of a case of motor learning with clinical applications”, J. Appl. Psychol. US: American Psychological Association, 10:1 (1926), 1–36

[6] E. R. F. W. Crossman, “A theory of the acquisition of speed-skill”, Ergonomics, 2 (1959), 153–166 | DOI

[7] H. Ebbinghaus, Memory: A Contribution to Experimental Psychology, Teachers College, Columbia University, 1885

[8] E. R. Kandel, “The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses”, Science, 294:5544 (2001), 1030–1038 | DOI

[9] D. J. Bakkum, Z. C. Chao, S. M. Potter, “Spatio-temporal electrical stimuli shape behavior of an embodied cortical network in a goal-directed learning task”, J. Neural Eng., 5:3 (2008), 310 | DOI | MR

[10] G. Shahaf, S. Marom, “Learning in Networks of Cortical Neurons”, J. Neurosci., 21:22 (2001), 8782–8788 | DOI

[11] A. Pimashkin, I. Simonov A. Kastalskiy, E. Koryagina, I. Mukhina, V. Kazantsev, “Adaptive enhancement of learning protocol in hippocampal cultured networks grown on multielectrode arrays”, Front. Neural Circuits, 7 (2013), 87 | DOI

[12] I. Baruchi, E. Ben-Jacob, “Towards neuro-memory-chip: Imprinting multiple memories in cultured neural networks”, Phys. Rev. E, 75:5 (2007), 50901 | DOI

[13] D. A. Wagenaar, J. Pine, S. M. Potter, “An extremely rich repertoire of bursting patterns during the development of cortical cultures”, BMC Neurosci, 2006 | DOI

[14] E. Maeda, H. P. Robinson, A. Kawana, “The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons”, J. Neurosci., 15:10 (1995), 6834–6845 | DOI

[15] A. Pimashkin, I. Kastalskiy, A. Simonov, E. Koryagina, I. Mukhina, V. Kazantsev, “Spiking Signatures of Spontaneous Activity Bursts in Hippocampal Cultures”, Front. Comput. Neurosci, 2011 | DOI

[16] J. le Feber, J. Stegenga, W. L. C. Rutten, “The Effect of Slow Electrical Stimuli to Achieve Learning in Cultured Networks of Rat Cortical Neurons”, PLoS One, 5:1 (2010) | DOI

[17] R. Segev, Y. Shapira, M. Benveniste, E. Ben-Jacob, “Observations and modeling of synchronized bursting in two-dimensional neural networks”, Phys. Rev. E, 64:1 (2001), 11920 | DOI

[18] A. A. Degterev, M. S. Burtsev, “Issledovanie spontannoi aktivnosti v modeli neironalnoi kultury s dolgovremennoi plastichnostyu”, Matematicheskaya biologiya i bioinformatika, 10:1 (2015), 234–244 | DOI

[19] Z. C. Chao, D. J. Bakkum, D. A. Wagenaar, S. M. Potter, Neuroinform, 3 (2005), 263–280 | DOI

[20] F. Kawasaki, M. Stiber, “A simple model of cortical culture growth: burst property dependence on network composition and activity”, Biol. Cybern., 108:4 (2014), 423–443 | DOI | MR

[21] Z. C. Chao, D. J. Bakkum, S. M. Potter, “Region-specific network plasticity in simulated and living cortical networks: comparison of the center of activity trajectory (CAT) with other statistics”, J. Neural Eng., 4:3 (2007), 294–308 | DOI | MR

[22] G. Q. Bi, M. M. Poo, “Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type”, J. Neurosci, 18:24 (1998), 10464–10472 | DOI

[23] P. J. Sjöström, G. G. Turrigiano, S. B. Nelson, “Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity”, Neuron, 32:6 (2001), 1149–1164 | DOI

[24] S. Lobov, A. Simonov, I. Kastalskiy, V. Kazantsev, “Network response synchronization enhanced by synaptic plasticity”, Eur. Phys. J. Spec. Top., 225 (2016), 29–39 | DOI

[25] S. A. Lobov, M. O. Zhuravlev, V. A. Makarov, V. B. Kazantsev, “Noise Enhanced Signaling in STDP Driven Spiking-Neuron Network”, Math. Model. Nat. Phenom., 12 (2017), 109–124 | DOI | MR

[26] S. Lobov, K. Balashova, V. A. Makarov, V. Kazantsev, “Competition of Spike-Conducting Pathways in STDP Driven Neural Networks”, Proceedings of the 5th International Congress on Neurotechnology, Electronics and Informatics – NEUROTECHNIX, 2017, 15–21 | DOI | MR

[27] J. O'Keefe, L. Nadel, “Précis of O]Keefe Nadel's the hippocampus as a cognitive map”, Behav. Brain Sci, 2:4 (1979), 487–494 | DOI

[28] E. I. Moser, E. Kropff, M. B. Moser, “Place Cells, Grid Cells, and the Brain's Spatial Representation System”, Annu. Rev. Neurosci. Annual Reviews, 31:1 (2008), 69–89 | DOI

[29] Ya. B. Kazanovich, I. E. Mysin, “Kak zhivotnye orientiruyutsya v prostranstve? Kletki mesta i kletki reshetki”, Matematicheskaya biologiya i bioinformatika, 10:1 (2015), 88–115 | DOI

[30] R. Borisyuk, D. Chik, Y. Kazanovich, J. da Silva Gomes, “Spiking neural network model for memorizing sequences with forward and backward recall”, Biosystems, 112:3 (2013), 214–223 | DOI

[31] F. Ponulak, J. Hopfield, “Rapid, parallel path planning by propagating wavefronts of spiking neural activity”, Front. Comput. Neurosci, 7 (2013), 98 | DOI

[32] J. L. Krichmar, A. K. Seth, D. A. Nitz, J. G. Fleischer, G. M. Edelman, “Spatial navigation and causal analysis in a brain-based device modeling cortical-hippocampal interactions”, Neuroinformatics, 3:3 (2005), 197–221 | DOI

[33] E. M. Izhikevich, “Simple model of spiking neurons”, IEEE Trans. Neural Networks, 14:6 (2003), 1569–1572 | DOI | MR

[34] E. M. Izhikevich, Which model to use for cortical spiking neurons?, IEEE Trans. Neural Networks, 15:5 (2004), 1063–1070 | DOI

[35] M. Tsodyks, K. Pawelzik, H. Markram, “Neural networks with dynamic synapses”, Neural Comput., 10:4 (1998), 821–835 | DOI

[36] A. Morrison, M. Diesmann, W. Gerstner, “Phenomenological models of synaptic plasticity based on spike timing”, Biol. Cybern., 98:6 (2008), 459–478 | DOI | MR

[37] S. Song, K. D. Miller, L. F. Abbott, “Competitive Hebbian learning through spike-timingdependent synaptic plasticity”, Nat. Neurosci, 3 (2000), 919 | DOI

[38] E. M. Izhikevich, “Solving the distal reward problem through linkage of STDP and dopamine signaling”, Cereb. Cortex, 17:10 (2007), 2443–2452 | DOI

[39] Q. R. Quiroga, S. Panzeri, Principles of neural coding, CRC Press, Boca Raton, 2013, 623 pp. | DOI | MR

[40] P. S. Rosenbloom, “A cognitive odyssey: From the power law of practice to a general learning mechanism and beyond”, Tutor. Quant. Methods Psychol, 2:2 (2006), 43–51 | DOI

[41] R. B. Anderson, “The power law as an emergent property”, Mem. Cognit., 29:7 (2001), 1061–1068 | DOI

[42] J. M. J. Murre, A. G. Chessa, “Power laws from individual differences in learning and forgetting: mathematical analyses”, Psychon. Bull. Rev., 18:3 (2011), 592–597 | DOI