Single-electron model for polaron on dimerized lattice
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 625-634.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to modeling the electronic and dynamic properties of dimerized polyacetylene is proposed. Compared to the well-known and widely used approach, where dimerization is formed by the $\pi$-electrons of the valence band, in the proposed model the same effect is provided by an additional potential in the dynamic part of the Hamiltonian. In the usually used computational schemes, for a lattice of $N$ sites, $N$ $\pi$-electrons have to be used to describe dimerization, so the total number of equations for quantum and classical dynamics is approximately equal to $N^2/2$. The integration step is dictated by the “fast” quantum subsystem and should be small. Both of these reasons make modeling difficult at large times and scales. In the proposed approach, in contrast to the $N$-electronic model, for describing a polaron on a dimerized lattice, the one-electron approximation is sufficient when the electron occupies the lowest level of the conduction band. Thus, the number of basis functions decreases to $3N$, which allows to carry out calculations on large scales and times.
@article{MBB_2019_14_2_a19,
     author = {T. Yu. Astakhova and G. A. Vinogradov},
     title = {Single-electron model for polaron on dimerized lattice},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {625--634},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a19/}
}
TY  - JOUR
AU  - T. Yu. Astakhova
AU  - G. A. Vinogradov
TI  - Single-electron model for polaron on dimerized lattice
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 625
EP  - 634
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a19/
LA  - en
ID  - MBB_2019_14_2_a19
ER  - 
%0 Journal Article
%A T. Yu. Astakhova
%A G. A. Vinogradov
%T Single-electron model for polaron on dimerized lattice
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 625-634
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a19/
%G en
%F MBB_2019_14_2_a19
T. Yu. Astakhova; G. A. Vinogradov. Single-electron model for polaron on dimerized lattice. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 625-634. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a19/

[1] A. J. Heeger, “Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials”, Rev. Mod. Phys., 73:3 (2001), 681–700 | DOI

[2] A. G. MacDiarmid, “Nobel Lecture “Synthetic metals”: A novel role for organic polymers”, Rev. Mod. Phys., 73:3 (2001), 701–712 | DOI

[3] H. Shirakawa, “Nobel Lecture: The discovery of polyacetylene film the dawning of an era of conducting polymers”, Rev. Mod. Phys., 73:3 (2001), 713–710 | DOI

[4] R. E. Peierls, “Cohesive Forces in Metals”, Quantum Theory of Solids, Chapter 5, Oxford Scholarship (Online: September 2007) | DOI

[5] S. A. Brazovskii, “Self-localized excitations in the Peierls-Fröhlich state”, Sov. Phys. JETP, 51:2 (1980), 342–353 | MR

[6] S. A. Brazovskii, N. N. Kirova, “Exitons, polarons, and bipolarons in conducting polymers”, JETP Letters, 33:1 (1981), 4–8

[7] W. P. Su, J. R. Schrieffer, A. J. Hegger, “Solitons in polyacetylene”, Phys. Rev. Lett., 42:25 (1979), 1698–1701 | DOI

[8] W. P. Su, J. R. Schrieffer, “Soliton dynamics in polyacetylene”, Proc. Natl. Acad. Sci. U.S.A., 77:10 (1980), 5626–5629 | DOI

[9] W. P. Su, J. R. Schrieffer, A. J. Heeger, “Soliton excitations in polyacetylene”, Phys. Rev. B, 22:4 (1980), 2099–2105 | DOI

[10] H. Takayama, Y. R. Lin-Liu, K. Maki, “Continuum model for solitons in polyacetylene”, Phys. Rev. B, 21:6 (1980), 2388–2393 | DOI

[11] E. G. Wilson, “The dynamics and stability of the solitary wave acoustic polaron”, Synthetic Metals, 28:3 (1989), D551-D556 | DOI

[12] Y. Ono, A. Terai, “Motion of charged soliton in polyacetylene due to electric field”, J. Phys. Soc. Jpn., 59:8 (1990), 2893–2904 | DOI

[13] Y. Arikabe, M. Kuwabara, Y. Ono, “Dynamics of an acoustic polaron in one-dimensional electron-lattice system”, J. Phys. Soc. Jpn, 65:5 (1996), 1317–1324 | DOI

[14] A. Johansson, S. Stafström, “Polaron dynamics in a system of coupled conjugated polymer chains”, Phys. Rev. Lett., 86:16 (2001), 3602–3605 | DOI

[15] A. N. Korshunova, V. D. Lakhno, Tech. Phys., 63 (2018), 1270 | DOI | MR

[16] A. A. Johansson, S. Stafström, “Nonadiabatic simulations of polaron dynamics”, Phys. Rev. B, 69 (2004), 235205 | DOI

[17] L. A. Ribeiro, W. F. da Cunha, P. H. de Oliveria Neto, R. Gargano, G. M. e Silva, “Effects of temperature and electric field induced phase transitions on the dynamics of polarons and bipolarons”, New J. Chem., 37 (2013), 2829–2836 | DOI

[18] T. Yu. Astakhova, G. A. Vinogradov, “Polaron in Electric Field and Vibrational Spectrum of Polyacetylene”, Mathematical Biology and Bioinformatics, 14:1 (2019), 150–159 | DOI

[19] V. N. Likhachev, G. A. Vinogradov, “Quantum problem of polaron localization and justification of the Su-Schrieffer-Heeger approximation”, Theor. Math. Physics, 199:2 (2019), 719–725 | DOI | MR | Zbl

[20] Y. Ono, A. Terai, “Motion of charged soliton in polyacetylene due to electric field”, Synthetic Met., 43:3 (1991), 3689–3692 | DOI

[21] T. Astakhova, G. Vinogradov, “New aspects of polaron dynamics in electric field”, Eur. Phys. J. B, 92:247 (2019) | DOI