Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_2_a19, author = {T. Yu. Astakhova and G. A. Vinogradov}, title = {Single-electron model for polaron on dimerized lattice}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {625--634}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a19/} }
TY - JOUR AU - T. Yu. Astakhova AU - G. A. Vinogradov TI - Single-electron model for polaron on dimerized lattice JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 625 EP - 634 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a19/ LA - en ID - MBB_2019_14_2_a19 ER -
T. Yu. Astakhova; G. A. Vinogradov. Single-electron model for polaron on dimerized lattice. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 625-634. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a19/
[1] A. J. Heeger, “Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials”, Rev. Mod. Phys., 73:3 (2001), 681–700 | DOI
[2] A. G. MacDiarmid, “Nobel Lecture “Synthetic metals”: A novel role for organic polymers”, Rev. Mod. Phys., 73:3 (2001), 701–712 | DOI
[3] H. Shirakawa, “Nobel Lecture: The discovery of polyacetylene film the dawning of an era of conducting polymers”, Rev. Mod. Phys., 73:3 (2001), 713–710 | DOI
[4] R. E. Peierls, “Cohesive Forces in Metals”, Quantum Theory of Solids, Chapter 5, Oxford Scholarship (Online: September 2007) | DOI
[5] S. A. Brazovskii, “Self-localized excitations in the Peierls-Fröhlich state”, Sov. Phys. JETP, 51:2 (1980), 342–353 | MR
[6] S. A. Brazovskii, N. N. Kirova, “Exitons, polarons, and bipolarons in conducting polymers”, JETP Letters, 33:1 (1981), 4–8
[7] W. P. Su, J. R. Schrieffer, A. J. Hegger, “Solitons in polyacetylene”, Phys. Rev. Lett., 42:25 (1979), 1698–1701 | DOI
[8] W. P. Su, J. R. Schrieffer, “Soliton dynamics in polyacetylene”, Proc. Natl. Acad. Sci. U.S.A., 77:10 (1980), 5626–5629 | DOI
[9] W. P. Su, J. R. Schrieffer, A. J. Heeger, “Soliton excitations in polyacetylene”, Phys. Rev. B, 22:4 (1980), 2099–2105 | DOI
[10] H. Takayama, Y. R. Lin-Liu, K. Maki, “Continuum model for solitons in polyacetylene”, Phys. Rev. B, 21:6 (1980), 2388–2393 | DOI
[11] E. G. Wilson, “The dynamics and stability of the solitary wave acoustic polaron”, Synthetic Metals, 28:3 (1989), D551-D556 | DOI
[12] Y. Ono, A. Terai, “Motion of charged soliton in polyacetylene due to electric field”, J. Phys. Soc. Jpn., 59:8 (1990), 2893–2904 | DOI
[13] Y. Arikabe, M. Kuwabara, Y. Ono, “Dynamics of an acoustic polaron in one-dimensional electron-lattice system”, J. Phys. Soc. Jpn, 65:5 (1996), 1317–1324 | DOI
[14] A. Johansson, S. Stafström, “Polaron dynamics in a system of coupled conjugated polymer chains”, Phys. Rev. Lett., 86:16 (2001), 3602–3605 | DOI
[15] A. N. Korshunova, V. D. Lakhno, Tech. Phys., 63 (2018), 1270 | DOI | MR
[16] A. A. Johansson, S. Stafström, “Nonadiabatic simulations of polaron dynamics”, Phys. Rev. B, 69 (2004), 235205 | DOI
[17] L. A. Ribeiro, W. F. da Cunha, P. H. de Oliveria Neto, R. Gargano, G. M. e Silva, “Effects of temperature and electric field induced phase transitions on the dynamics of polarons and bipolarons”, New J. Chem., 37 (2013), 2829–2836 | DOI
[18] T. Yu. Astakhova, G. A. Vinogradov, “Polaron in Electric Field and Vibrational Spectrum of Polyacetylene”, Mathematical Biology and Bioinformatics, 14:1 (2019), 150–159 | DOI
[19] V. N. Likhachev, G. A. Vinogradov, “Quantum problem of polaron localization and justification of the Su-Schrieffer-Heeger approximation”, Theor. Math. Physics, 199:2 (2019), 719–725 | DOI | MR | Zbl
[20] Y. Ono, A. Terai, “Motion of charged soliton in polyacetylene due to electric field”, Synthetic Met., 43:3 (1991), 3689–3692 | DOI
[21] T. Astakhova, G. Vinogradov, “New aspects of polaron dynamics in electric field”, Eur. Phys. J. B, 92:247 (2019) | DOI