Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_2_a17, author = {M. P. Kulakov and E. V. Kurilova and E. Ya. Frisman}, title = {Synchronization and bursting activity in the model for two predator-prey systems coupled by predator migration}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {588--611}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a17/} }
TY - JOUR AU - M. P. Kulakov AU - E. V. Kurilova AU - E. Ya. Frisman TI - Synchronization and bursting activity in the model for two predator-prey systems coupled by predator migration JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 588 EP - 611 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a17/ LA - ru ID - MBB_2019_14_2_a17 ER -
%0 Journal Article %A M. P. Kulakov %A E. V. Kurilova %A E. Ya. Frisman %T Synchronization and bursting activity in the model for two predator-prey systems coupled by predator migration %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 588-611 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a17/ %G ru %F MBB_2019_14_2_a17
M. P. Kulakov; E. V. Kurilova; E. Ya. Frisman. Synchronization and bursting activity in the model for two predator-prey systems coupled by predator migration. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 588-611. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a17/
[1] E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151 | DOI | MR
[2] B. Mukhopadhyay, R. Bhattacharyya, “Role of predator switching in an eco-epidemiological model with disease in the prey”, Ecological Modelling, 220:7 (2009), 931–939 | DOI
[3] Md. Saifuddin, S. Biswas, S. Samanta, S. Sarkar, J. Chattopadhyay, “Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator”, Chaos, Solitons Fractals, 91 (2016), 270–285 | DOI | MR | Zbl
[4] H. N. Comins, M. P. Hassell, R. M. May, “The spatial dynamics of host-parasitoid systems”, J. Animal Ecology, 61 (1992), 735–748 | DOI
[5] V. N. Govorukhin, A. B. Morgulis, Yu. V. Tyutyunov, “Medlennyi taksis v modeli khischnik-zhertva”, Doklady Akademii nauk, 372:6 (2000), 730–732 | Zbl
[6] Yu. V. Tyutyunov, L. I. Titova, I. N. Senina, “Prey-taxis destabilizes homogeneous stationary state in spatial Gause-Kolmogorov-type model for predator-prey system”, Ecological Complexity, 31 (2017), 170–180 | DOI
[7] V. Křivan, J. Eisner, “The effect of the Holling type II functional response on apparent competition”, Theoretical Population Biology, 70 (2006), 421–430 | DOI
[8] Y. Shen, Z. Hou, H. Xin, “Transition to burst synchronization in coupled neuron networks”, Physical Review E, 77 (2008), 031920, 1–5 | DOI
[9] Yu. V. Bakhanova, A. O. Kazakov, A. G. Korotkov, “Spiralnyi khaos v modelyakh tipa Lotki-Volterry”, Zhurnal srednevolzhskogo matematicheskogo obschestva, 19:2 (2017), 13–24 | DOI | Zbl
[10] Y. V. Bakhanova, A. O. Kazakov, A. G. Korotkov, T. A. Levanova, G. V. Osipov, “Spiral attractors as the root of a new type of “bursting activity” in the Rosenzweig-MacArthur model”, Eur. Phys. J. Special, 227 (2018), 959–970 | DOI
[11] T. Huang, H. Zhang, “Bifurcation, chaos and pattern formation in a space-and time-discrete predator-prey system”, Chaos, Solitons Fractals, 91 (2016), 92–107 | DOI | MR | Zbl
[12] E. M. Izhikevich, “Neural excitability, spiking, bursting”, International Journal of Bifurcation and Chaos, 10:06 (2000), 1171–1266 | DOI | MR | Zbl
[13] E. M. Izhikevich, “Synchronization of Elliptic Bursters”, SIAM REVIEW, 43:2 (2001), 315–344 | DOI | MR | Zbl
[14] A. Shilnikov, G. Cymbalyuk, “Homoclinic bifurcations of periodic orbits en a route from tonic-spiking to bursting in neuron models”, Regular and Chaotic Dynamics, 9:3 (2004), 281–297 | DOI | MR | Zbl
[15] V. N. Belykh, I. V. Belykh, M. Colding-Jørgensen, E. Mosekilde, “Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models”, Eur. Phys. J. E, 2000, no. 3, 205–219 | DOI
[16] M. Kolomiets, A. Shilnikov, “Metody kachestvennoi teorii dlya modeli Khindmarsh-Rouz”, Nelineinaya dinamika, 6:1 (2010), 23–52 | DOI
[17] V. A. A. Jansen, “The Dynamics of Two Diffusively Coupled Predator-Prey Populations”, Theoretical Population Biology, 59:2 (2001), 119–131 | DOI | Zbl
[18] Y. Liu, The Dynamical Behavior of a Two Patch Predator-Prey Model, Theses, Dissertations, Master Projects, 2010, 46 pp.
[19] S. Saha, N. Bairagi, S. K. Dana, “Chimera states in ecological network under weighted mean-field dispersal of species”, Front. Appl. Math. Stat., 5:15 (2019), 1–11 | DOI
[20] A. D. Bazykin, Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 182 pp. | MR
[21] A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, eds. A. I. Khibnik, B. Krauskopf, World Scientific Publishing Co. Pte. Ltd, 1998, 216 pp. | DOI | MR
[22] S. Rinaldi, S. Muratori, “Slow-fast limit cycles in predator-prey models”, Ecological Modelling, 61 (1992), 287–308 | DOI
[23] E. V. Kurilova, M. P. Kulakov, E. Ya. Frisman, “Posledstviya sinkhronizatsii kolebanii chislennostei v dvukh vzaimodeistvuyuschikh soobschestvakh tipa «khischnik–zhertva» pri nasyschenii khischnika i limitirovanii chislennosti zhertvy”, Informatika i sistemy upravleniya, 45:3 (2015), 24–34
[24] C. S. Holling, “Some characteristics of simple types of predation and parasitism”, Canadian Entomologist, 91 (1959), 385–398 | DOI
[25] S. Ghosh, S. Bhattacharyya, “A two-patch prey-predator model with food-gathering activity”, J. Appl. Math. Comput., 37 (2011), 497–521 | DOI | MR | Zbl
[26] Y. Kang, S. K. Sasmal, K. Messan, “A two-patch prey-predator model with predator dispersal driven by the predation strength”, Mathematical Biosciences and Engineering, 14:4 (2017), 843–880 | DOI | MR | Zbl
[27] E. V. Kurilova, M. P. Kulakov, “Slozhnye rezhimy v modeli migratsionno svyazannykh soobschestv «khischnik-zhertva» s bystrymi i medlennymi tsiklami”, Regionalnye problemy, 22:1 (2019), 12–19 | DOI
[28] T. Asada, H. Yoshida, “Coefficient criterion for four-dimensional Hopf bifurcations: a complete mathematical characterization and applications to economic dynamics”, Chaos, Solitons and Fractals, 18 (2003), 525–536 | DOI | MR | Zbl
[29] A. Dhooge, W. Govaerts, Yu. A. Kuznetsov, H. G. E. Meijer, B. Sautois, “New features of the software MatCont for bifurcation analysis of dynamical systems”, Mathematical and Computer Modelling of Dynamical Systems, 14:2 (2008), 147–175 | DOI | MR | Zbl
[30] E. Benoît, J. L. Callot, F. Diener, M. Diener, “Chasse au canard”, Collectanea Mathematica, 31-32 (1981), 37–119 | MR
[31] E. K. Ersöz, M. Desroches, C. R. Mirasso, S. Rodrigues, “Anticipation via canards in excitable systems”, Chaos, 013111:29 (2019) | DOI | MR | Zbl
[32] N. Fenichel, “Geometric Singular Perturbation Theory for Ordinary Differential Equations”, Journal of Differential Equations, 31 (1979), 53–98 | DOI | MR | Zbl
[33] M. Desrochesy, V. Kirk, “Spike-Adding in a Canonical Three-Time-Scale Model: Superslow Explosion and Folded-Saddle Canards”, SIAM J. Applied dynamical systems, 17:3 (2018), 1989–2017 | DOI | MR