Synchronization and bursting activity in the model for two predator-prey systems coupled by predator migration
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 588-611.

Voir la notice de l'article provenant de la source Math-Net.Ru

The papers is devoted to a model for two non-identical predator-prey communities coupled by migration and characterized by logistic growth of prey and Holling type II functional response. The coupling is a predator migration at constant weak rate. The non-identity is the difference in the prey growth rates or predator mortalities in each patch. We studied the equilibrium states of model and scenarios of loss of their stability and emerge of complex periodic solutions. It was shown that in some domains of the parameter space there is a bursting activity which are that the dynamics of two communities contain segments of slowly resting dynamic (as part of a fast-slow cycle or canard) and regular bursts of spikes. In the resting part, the dynamics of the second community, as a rule, follow the slow changes in the first community, i.e. the dynamics in different patches are synchronous. But in the fast part there is only phase synchronization between the fast-slow cycle in first patch and bursts in second. We classified the scenarios of transition between different types of bursting activity by location spiking manifold and canard. These types differ not so much in size, shape or numbers of spikes as in the order of bursts emerge relative a slow-fast cycle. In a typical case the start of burst (divergent fast oscillations) coincides with the minimum numbers or quasi-extinction of prey in the first patch. After a rapid increase in the prey number in the first patch, diverging fluctuations give way to damped in the second patch. Such dynamics correspond to the rhombus-wave shape of spikes cluster. Another case is interesting, when the burst of spikes is formed after the full recovery of prey and with a certain predator number in the first patch. In this case, the spikes cluster takes the shape of a triangle-wave or a truncated rhombus-wave. It was shown that transitions between these types of bursts are accompanied by a change in the oscillation period and the degree of synchronization. Triangular-wave bursters correspond to complete synchronization of the predator dynamics in the resting part and rhomboid-wave correspond to antiphase synchronization. In the fast part with many spikes, communities are completely asynchronous to each other.
@article{MBB_2019_14_2_a17,
     author = {M. P. Kulakov and E. V. Kurilova and E. Ya. Frisman},
     title = {Synchronization and bursting activity in the model for two predator-prey systems coupled by predator migration},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {588--611},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a17/}
}
TY  - JOUR
AU  - M. P. Kulakov
AU  - E. V. Kurilova
AU  - E. Ya. Frisman
TI  - Synchronization and bursting activity in the model for two predator-prey systems coupled by predator migration
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 588
EP  - 611
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a17/
LA  - ru
ID  - MBB_2019_14_2_a17
ER  - 
%0 Journal Article
%A M. P. Kulakov
%A E. V. Kurilova
%A E. Ya. Frisman
%T Synchronization and bursting activity in the model for two predator-prey systems coupled by predator migration
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 588-611
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a17/
%G ru
%F MBB_2019_14_2_a17
M. P. Kulakov; E. V. Kurilova; E. Ya. Frisman. Synchronization and bursting activity in the model for two predator-prey systems coupled by predator migration. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 588-611. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a17/

[1] E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151 | DOI | MR

[2] B. Mukhopadhyay, R. Bhattacharyya, “Role of predator switching in an eco-epidemiological model with disease in the prey”, Ecological Modelling, 220:7 (2009), 931–939 | DOI

[3] Md. Saifuddin, S. Biswas, S. Samanta, S. Sarkar, J. Chattopadhyay, “Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator”, Chaos, Solitons Fractals, 91 (2016), 270–285 | DOI | MR | Zbl

[4] H. N. Comins, M. P. Hassell, R. M. May, “The spatial dynamics of host-parasitoid systems”, J. Animal Ecology, 61 (1992), 735–748 | DOI

[5] V. N. Govorukhin, A. B. Morgulis, Yu. V. Tyutyunov, “Medlennyi taksis v modeli khischnik-zhertva”, Doklady Akademii nauk, 372:6 (2000), 730–732 | Zbl

[6] Yu. V. Tyutyunov, L. I. Titova, I. N. Senina, “Prey-taxis destabilizes homogeneous stationary state in spatial Gause-Kolmogorov-type model for predator-prey system”, Ecological Complexity, 31 (2017), 170–180 | DOI

[7] V. Křivan, J. Eisner, “The effect of the Holling type II functional response on apparent competition”, Theoretical Population Biology, 70 (2006), 421–430 | DOI

[8] Y. Shen, Z. Hou, H. Xin, “Transition to burst synchronization in coupled neuron networks”, Physical Review E, 77 (2008), 031920, 1–5 | DOI

[9] Yu. V. Bakhanova, A. O. Kazakov, A. G. Korotkov, “Spiralnyi khaos v modelyakh tipa Lotki-Volterry”, Zhurnal srednevolzhskogo matematicheskogo obschestva, 19:2 (2017), 13–24 | DOI | Zbl

[10] Y. V. Bakhanova, A. O. Kazakov, A. G. Korotkov, T. A. Levanova, G. V. Osipov, “Spiral attractors as the root of a new type of “bursting activity” in the Rosenzweig-MacArthur model”, Eur. Phys. J. Special, 227 (2018), 959–970 | DOI

[11] T. Huang, H. Zhang, “Bifurcation, chaos and pattern formation in a space-and time-discrete predator-prey system”, Chaos, Solitons Fractals, 91 (2016), 92–107 | DOI | MR | Zbl

[12] E. M. Izhikevich, “Neural excitability, spiking, bursting”, International Journal of Bifurcation and Chaos, 10:06 (2000), 1171–1266 | DOI | MR | Zbl

[13] E. M. Izhikevich, “Synchronization of Elliptic Bursters”, SIAM REVIEW, 43:2 (2001), 315–344 | DOI | MR | Zbl

[14] A. Shilnikov, G. Cymbalyuk, “Homoclinic bifurcations of periodic orbits en a route from tonic-spiking to bursting in neuron models”, Regular and Chaotic Dynamics, 9:3 (2004), 281–297 | DOI | MR | Zbl

[15] V. N. Belykh, I. V. Belykh, M. Colding-Jørgensen, E. Mosekilde, “Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models”, Eur. Phys. J. E, 2000, no. 3, 205–219 | DOI

[16] M. Kolomiets, A. Shilnikov, “Metody kachestvennoi teorii dlya modeli Khindmarsh-Rouz”, Nelineinaya dinamika, 6:1 (2010), 23–52 | DOI

[17] V. A. A. Jansen, “The Dynamics of Two Diffusively Coupled Predator-Prey Populations”, Theoretical Population Biology, 59:2 (2001), 119–131 | DOI | Zbl

[18] Y. Liu, The Dynamical Behavior of a Two Patch Predator-Prey Model, Theses, Dissertations, Master Projects, 2010, 46 pp.

[19] S. Saha, N. Bairagi, S. K. Dana, “Chimera states in ecological network under weighted mean-field dispersal of species”, Front. Appl. Math. Stat., 5:15 (2019), 1–11 | DOI

[20] A. D. Bazykin, Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 182 pp. | MR

[21] A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, eds. A. I. Khibnik, B. Krauskopf, World Scientific Publishing Co. Pte. Ltd, 1998, 216 pp. | DOI | MR

[22] S. Rinaldi, S. Muratori, “Slow-fast limit cycles in predator-prey models”, Ecological Modelling, 61 (1992), 287–308 | DOI

[23] E. V. Kurilova, M. P. Kulakov, E. Ya. Frisman, “Posledstviya sinkhronizatsii kolebanii chislennostei v dvukh vzaimodeistvuyuschikh soobschestvakh tipa «khischnik–zhertva» pri nasyschenii khischnika i limitirovanii chislennosti zhertvy”, Informatika i sistemy upravleniya, 45:3 (2015), 24–34

[24] C. S. Holling, “Some characteristics of simple types of predation and parasitism”, Canadian Entomologist, 91 (1959), 385–398 | DOI

[25] S. Ghosh, S. Bhattacharyya, “A two-patch prey-predator model with food-gathering activity”, J. Appl. Math. Comput., 37 (2011), 497–521 | DOI | MR | Zbl

[26] Y. Kang, S. K. Sasmal, K. Messan, “A two-patch prey-predator model with predator dispersal driven by the predation strength”, Mathematical Biosciences and Engineering, 14:4 (2017), 843–880 | DOI | MR | Zbl

[27] E. V. Kurilova, M. P. Kulakov, “Slozhnye rezhimy v modeli migratsionno svyazannykh soobschestv «khischnik-zhertva» s bystrymi i medlennymi tsiklami”, Regionalnye problemy, 22:1 (2019), 12–19 | DOI

[28] T. Asada, H. Yoshida, “Coefficient criterion for four-dimensional Hopf bifurcations: a complete mathematical characterization and applications to economic dynamics”, Chaos, Solitons and Fractals, 18 (2003), 525–536 | DOI | MR | Zbl

[29] A. Dhooge, W. Govaerts, Yu. A. Kuznetsov, H. G. E. Meijer, B. Sautois, “New features of the software MatCont for bifurcation analysis of dynamical systems”, Mathematical and Computer Modelling of Dynamical Systems, 14:2 (2008), 147–175 | DOI | MR | Zbl

[30] E. Benoît, J. L. Callot, F. Diener, M. Diener, “Chasse au canard”, Collectanea Mathematica, 31-32 (1981), 37–119 | MR

[31] E. K. Ersöz, M. Desroches, C. R. Mirasso, S. Rodrigues, “Anticipation via canards in excitable systems”, Chaos, 013111:29 (2019) | DOI | MR | Zbl

[32] N. Fenichel, “Geometric Singular Perturbation Theory for Ordinary Differential Equations”, Journal of Differential Equations, 31 (1979), 53–98 | DOI | MR | Zbl

[33] M. Desrochesy, V. Kirk, “Spike-Adding in a Canonical Three-Time-Scale Model: Superslow Explosion and Folded-Saddle Canards”, SIAM J. Applied dynamical systems, 17:3 (2018), 1989–2017 | DOI | MR