Comparison of modeling schemes for natural course of pulmonary tuberculosis
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 570-587.

Voir la notice de l'article provenant de la source Math-Net.Ru

In construction of mathematical models of propagation and control of pulmonary tuberculosis, presence or absence of bacterioexcretion is often used as the marker of disease severity. There are two major schemes of modeling for natural corse of tuberculosis. The first one is so called parallel scheme, the more frequently used, which assumes that a fraction of incident cases develops bacterioexcretion rapidly and retains it till the end of the disease. The second one is serial scheme, the less often used one, which assumes that tuberculosis always starts without bactrioexcretion, and then a fraction of cases progresses to the bacterioexcretion stage. In this article, we compare these two modeling schemes on the basis of their fit to the real data from Moscow city, 2013–2018, which contain information on time and results of the last fluorography examination of the detected tuberculosis cases and their health condition at the moment of detection. Such data limit the possible duration of the disease, and, thus, permit an estimation of the dynamics of progression to bacterioexcretion for untreated tuberculosis. We have developed an agent-based model with realistic profiles of mortality and undergoing fluorography examinations and with an analog of the traditional compartmental model of natural history of tuberculosis on the basis of ordinary differential equations. On the basis of computational experiments with the model, the serial modelling scheme turned out to be closer to reality. On the other hand, due to the bad fit to the real data, we concluded that both the detection submodel and the submodel of natural course of pulmonary tuberculosis should be redesigned.
@article{MBB_2019_14_2_a16,
     author = {K. K. Avilov and A. A. Romanyukha and E. M. Belilovsky and S. E. Borisov},
     title = {Comparison of modeling schemes for natural course of pulmonary tuberculosis},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {570--587},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a16/}
}
TY  - JOUR
AU  - K. K. Avilov
AU  - A. A. Romanyukha
AU  - E. M. Belilovsky
AU  - S. E. Borisov
TI  - Comparison of modeling schemes for natural course of pulmonary tuberculosis
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 570
EP  - 587
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a16/
LA  - ru
ID  - MBB_2019_14_2_a16
ER  - 
%0 Journal Article
%A K. K. Avilov
%A A. A. Romanyukha
%A E. M. Belilovsky
%A S. E. Borisov
%T Comparison of modeling schemes for natural course of pulmonary tuberculosis
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 570-587
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a16/
%G ru
%F MBB_2019_14_2_a16
K. K. Avilov; A. A. Romanyukha; E. M. Belilovsky; S. E. Borisov. Comparison of modeling schemes for natural course of pulmonary tuberculosis. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 570-587. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a16/

[1] R. Anderson, R. Mei, Infektsionnye bolezni cheloveka. Dinamika i kontrol, Mir, Nauchnyi mir, M., 2004, 784 pp.

[2] K. K. Avilov, A. A. Romanyukha, “Matematicheskie modeli rasprostraneniya i kontrolya tuberkuleza”, Matematicheskaya biologiya i bioinformatika, 2:2 (2007), 188–318 | DOI

[3] M. I. Perelman (red.), Ftiziatriya: natsionalnoe rukovodstvo, GEOTAR-Media, M., 2010, 512 pp.

[4] V. I. Litvinov, Latentnaya tuberkuleznaya infektsiya: svoistva vozbuditelya; reaktsii makroorganizma; epidemiologiya i diagnostika (IGRA-testy, Diaskintest i drugie podkhody) lechenie, Departament zdravookhraneniya g. Moskvy, MNPTs borby s tuberkulezom, M., 2016, 194 pp.

[5] E. W. Tiemersma, M. J. van der Werf, M. W. Borgdorff, B. G. Williams, N. J. D. Nagelkerke, “Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review”, PLOS One, 6 (2011), e17601 | DOI

[6] A. M. Jr. Dannenberg, “Pathophysiology: basic aspects”, Tuberculosis and non-tuberculous mycobacterial infections, ed. Schlossberg D., WB Saunders, Philadelphia, PA, USA, 1999, 17–47

[7] S. M. Blower, A. R. McLean, T. C. Porco, P. M. Small, P. C. Hopewell, M. A. Sanchez, A. R. Moss, “The intrinsic transmission dynamics of tuberculosis epidemics”, Nature Medcine, 1:8 (1995), 815–821 | DOI

[8] R. Baltussen, K. Floyd, C. Dye, “Cost effectiveness analysis of strategies for tuberculosis control in developing countries”, BMJ, 331:7529 (2005), 1364 | DOI

[9] S. Brogger, “Systems analysis in tuberculosis control: a model”, Am. Rev. Respir. Dis., 95 (1967), 419–434

[10] M. I. Perelman, G. I. Marchuk, S. E. Borisov, B. Ya. Kazennykh, K. K. Avilov, A. S. Karkach, A. A. Romanyukha, “Tuberculosis epidemiology in Russia: the mathematical model and data analysis”, Russ. J. Numer. Anal. Math. Modelling, 19 (2004), 305–314 | DOI | MR | Zbl

[11] R. Yaesoubi, T. Cohen, “Identifying dynamic tuberculosis casefinding policies for HIV/TB coepidemics”, Proc. Natl. Acad. Sci. USA, 110 (2013), 9457–9462 | DOI

[12] K. K. Avilov, A. A. Romanyukha, S. E. Borisov, E. M. Belilovsky, O. B. Nechaeva, A. S. Karkach, “An approach to estimating tuberculosis incidence and case detection rate from routine notification data”, The International Journal of Tuberculosis and Lung Disease, 19:3 (2015), 288–294 | DOI

[13] Rossiiskaya baza dannykh po rozhdaemosti i smertnosti, , Tsentr demograficheskikh issledovanii Rossiiskoi ekonomicheskoi shkoly, Moskva (Rossiya) (data obrascheniya: 20.08.2019) http://demogr.nes.ru/index.php/ru/demogr_indicat/data

[14] WHO. Guideline: Nutritional Care and Support for Patients With Tuberculosis, World Health Organization, Geneva, 2013

[15] P. Narasimhan, J. Wood, C. R. Macintyre, D. Mathai, “Risk factors for tuberculosis”, Pulmonary medicine, 2013, 828939 | DOI