On stationary solutions of delay differential equations: a model of local translation in synapses
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 554-569.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of analytical analysis of stationary solutions of a differential equation with two delayed arguments $\tau_1$ and $\tau_2$ are presented. Such equations are used in modeling of molecular-genetic systems where the delay of arguments appear naturally. Conditions of existence of non-negative solutions are described, and dependence of stability of these solutions on the values of delayed arguments is studied. This stability theory allows to give complete characterization of these solutions for all values of the parameters of the model, and ensures instability of a positive equilibrium point for any values of the delays $\tau_2\ge\tau_1\ge0$ in the case when it is unstable for $\tau_2=\tau_1=0$ (absolute instability). If this positive equilibrium point is stable only for $\tau_2=\tau_1=0$, then this domain $\tau_2\ge\tau_1\ge0$ is the domain of absolute instability as well. For positive equilibrium points which are stable at $\tau_2=\tau_1=0$, we find domains of absolute stability were the equilibrium points remain stable for all values of the parameters $\tau_1$ and $\tau_2$. The domains of relative stability, where these points become unstable for some values of these parameters are also described. We show that when the efficiency of translation, and non-linearity and complexity of its regulation mechanisms grow, the domains of the absolute and relative stability of the positive equilibrium point shrink, while the domains of its instability expand. So, enhanced activity of the local translation system can be a factor of its instability and that of the risk of neuro-psychical diseases related to distortions of plasticity of the synapse and memory, where importance of stability of the proteome in the synapse is postulated.
@article{MBB_2019_14_2_a15,
     author = {V. A. Likhoshvai and T. M. Khlebodarova},
     title = {On stationary solutions of delay differential equations: a model of local translation in synapses},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {554--569},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a15/}
}
TY  - JOUR
AU  - V. A. Likhoshvai
AU  - T. M. Khlebodarova
TI  - On stationary solutions of delay differential equations: a model of local translation in synapses
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 554
EP  - 569
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a15/
LA  - ru
ID  - MBB_2019_14_2_a15
ER  - 
%0 Journal Article
%A V. A. Likhoshvai
%A T. M. Khlebodarova
%T On stationary solutions of delay differential equations: a model of local translation in synapses
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 554-569
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a15/
%G ru
%F MBB_2019_14_2_a15
V. A. Likhoshvai; T. M. Khlebodarova. On stationary solutions of delay differential equations: a model of local translation in synapses. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 554-569. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a15/

[1] V. A. Likhoshvai, S. I. Fadeev, G. V. Demidenko, Yu. G. Matushkin, “Modelirovanie uravneniem s zapazdyvayuschim argumentom mnogostadiinogo sinteza bez vetvleniya”, Sib. zhurn. industr. matem., 7:1 (17) (2004), 73–94 | MR | Zbl

[2] S. I. Fadeev, V. A. Likhoshvai, D. N. Shtokalo, “Issledovanie modeli sinteza lineinykh biomolekul s uchetom obratimosti protsessov”, Sib. zhurn. industr. matem., 8:3 (23) (2005), 149–162 | Zbl

[3] T. M. Khlebodarova, V. V. Kogai, S. I. Fadeev, V. A. Likhoshvai, “Chaos and hyperchaos in simple gene network with negative feedback and time delays”, J. Bioinform. Comput. Biol., 15:2 (2017), 1650042 | DOI | MR

[4] V. A. Likhoshvai, V. V. Kogai, S. I. Fadeev, T. M. Khlebodarova, “Alternative splicing can lead to chaos”, J. Bioinform. Comput. Biol., 13 (2015), 1540003 | DOI

[5] V. A. Likhoshvai, V. V. Kogai, S. I. Fadeev, T. M. Khlebodarova, “Chaos and hyperchaos in a model of ribosome autocatalytic synthesis”, Sci. Rep., 6 (2016), 38870 | DOI

[6] Y. Suzuki, M. Lu, E. Ben-Jacob, J. N. Onuchic, “Periodic, Quasi-periodic and chaotic dynamics in simple gene elements with time delays”, Sci. Rep, 6 (2016) | DOI

[7] M. C. Mackey, L. Glass, “Oscillation and chaos in physiological control systems”, Science, 197 (1977), 287–289 | DOI | Zbl

[8] F. J. Perez, C. P. Malta, F. A. Coutinho, “Qualitative analysis of oscillations in isolated populations of flies”, J. Theor. Biol., 71:4 (1978), 505–514 | DOI | MR

[9] K. Ikeda, K. Matsumoto, “High-dimensional chaotic behavior in systems with timedelayed feedback”, Physica D, 29 (1987), 223–235 | DOI | Zbl

[10] J. C. Bastos de Figueiredo, L. Diambra, L. Glass, C. P. Malta, “Chaos in two-looped negative feedback systems”, Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 65 (2002), 051905 | DOI | MR

[11] V. V. Kogai, V. A. Likhoshvai, S. I. Fadeev, T. M. Khlebodarova, “Multiple scenarios of transition to chaos in the alternative splicing model”, Int. J. Bifurcat. Chaos, 27 (2017), 1730006 | DOI | MR | Zbl

[12] V. A. Likhoshvai, S. I. Fadeev, V. V. Kogai, T. M. Khlebodarova, “On the chaos in gene networks”, J. Bioinform. Comput. Biol., 11:1 (2013), 1340009 | DOI

[13] S. I. Fadeev, V. V. Kogai, T. M. Khlebodarova, V. A. Likhoshvai, “O chislennom issledovanii periodicheskikh reshenii uravneniya s zapazdyvayuschim argumentom v biologicheskikh modelyakh”, Sib. zhurn. industr. matem., 19:1 (2016), 94–105 | Zbl

[14] N. A. Monk, “Oscillatory expression of Hes1, p53, and NF-$\kappa$B driven by transcriptional time delays”, Curr. Biol., 13 (2003), 1409–1413 | DOI

[15] M. Jensen, K. Sneppen, G. Tiana, “Sustained oscillations and time delays in gene expression of protein Hes1”, FEBS Lett, 541 (2003), 176–177 | DOI

[16] H. Momiji, N. Monk, “Dissecting the dynamics of the Hes1 genetic oscillator”, J. Theor. Biol, 254 (2008), 784–798 | DOI | Zbl

[17] S. Bernard, B. Cajavec, L. Pujo-Menjouet, M. C. Mackey, H. Herzel, “Modelling transcriptional feedback loops: the role of Gro/TLE1 in Hes1 oscillations”, Philos. Trans. A Math. Phys. Eng. Sci., 364 (2006), 1155–1170 | MR | Zbl

[18] M. Bodnar, A. Bartlomiejczyk, “Stability of delay induced oscillations in gene expression of Hes1 protein model”, Nonlinear Analysis: Real World Applications, 13 (2012), 2227–2239 | DOI | MR | Zbl

[19] T. M. Khlebodarova, V. V. Kogai, V. A. Likhoshvai, “O khaoticheskom potentsiale sistemy lokalnoi translyatsii v aktivirovannom sinapse”, Matematicheskaya biologiya i bioinformatika, v. 7, ed. V. D. Lakhno, IMPB RAN, Puschino, 2018, e68 | DOI

[20] M. E. Klein, H. Monday, B. A. Jordan, “Proteostasis and RNA binding proteins in synaptic plasticity and in the pathogenesis of neuropsychiatric disorders”, Neural. Plast., 2016 (2016), 3857934 | DOI

[21] S. R. Louros, E. K. Osterweil, “Perturbed proteostasis in autism spectrum disorders”, J. Neurochem., 139 (2016), 1081–1092 | DOI

[22] S. I. Fadeev, V. A. Likhoshvai, “O gipoteticheskikh gennykh setyakh”, Sib. zhurn. industr. matem., 6:3 (15) (2003), 134–153 | MR | Zbl

[23] B. Shan, C. Y. Chang, D. Jones, W. H. Lee, “The transcription factor E2F-1 mediates the autoregulation of RB gene expression”, Mol. Cell. Biol, 14 (1994), 299–309 | DOI

[24] H. Hirata, S. Yoshiura, T. Ohtsuka, Y. Bessho, T. Harada, K. Yoshikawa, R. Kageyama, “Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop”, Science, 298 (2002), 840–843 | DOI

[25] M. Trieu, A. Ma, S. R. Eng, N. Fedtsova, E. E. Turner, “Direct autoregulation and gene dosage compensation by POU-domain transcription factor Brn3a”, Development, 130 (2003), 111–121 | DOI

[26] J. Magenheim, R. Hertz, I. Berman, J. Nousbeck, J. Bar-Tana, “Negative autoregulation of HNF-4alpha gene expression by HNF-4alpha1”, Biochem. J., 388 (2005), 325–332 | DOI

[27] R. Monteiro, C. Pouget, R. Patient, “The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1$\gamma$”, EMBO. J., 30 (2011), 1093–1103 | DOI

[28] B. Bonev, P. Stanley, N. Papalopulu, “MicroRNA-9 Modulates Hes1 ultradian oscillations by forming a double-negative feedback loop”, Cell. Rep., 2 (2012), 10–18 | DOI

[29] P. Navarro, N. Festuccia, D. Colby, A. Gagliardi, N. P. Mullin, W. Zhang, V. Karwacki-Neisius, R. Osorno, D. Kelly, M. Robertson, I. Chambers, “OCT4/SOX2-independent Nanog autorepression modulates heterogeneous Nanog gene expression in mouse ES cells”, EMBO. J., 31 (2012), 4547–4562 | DOI

[30] M. Fidalgo, F. Faiola, C. F. Pereira, J. Ding, A. Saunders, J. Gingold, C. Schaniel, I. R. Lemischka, J. C. Silva, J. Wang, “Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming”, Proc. Natl. Acad. Sci. USA, 109 (2012), 16202–16207 | DOI

[31] P. Foka, N. N. Singh, R. C. Salter, D. P. Ramji, “The tumour necrosis factor-alphamediated suppression of the CCAAT/enhancer binding protein-alpha gene transcription in hepatocytes involves inhibition of autoregulation”, Int. J. Biochem. Cell. Biol, 41 (2009), 1189–1197 | DOI

[32] R. Kageyama, Y. Niwa, A. Isomura, A. González, Y. Harima, “Oscillatory gene expression and somitogenesis”, Wiley. Interdiscip. Rev. Dev. Biol., 1 (2012), 629–641 | DOI

[33] S. A. Holley, D. Jülich, G. J. Rauch, R. Geisler, C. Nüsslein-Volhard, “Her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis”, Development, 129 (2002), 1175–1183

[34] Y. Bessho, H. Hirata, Y. Masamizu, R. Kageyama, “Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock”, Genes. Dev., 17 (2003), 1451–1456 | DOI

[35] J. K. Dale, M. Maroto, “A Hes1-based oscillator in cultured cells and its potential implications for the segmentation clock”, Bioessays, 25 (2003), 200–203 | DOI

[36] H. Hirata, Y. Bessho, H. Kokubu, Y. Masamizu, S. Yamada, J. Lewis, R. Kageyama, “Instability of Hes7 protein is crucial for the somite segmentation clock”, Nat. Genet., 36 (2004), 750–754 | DOI

[37] A. Mara, S. A. Holley, “Oscillators and the emergence of tissue organization during zebrafish somitogenesis”, Trends. Cell. Biol., 17 (2007), 593–599 | DOI

[38] Y. Harima, R. Kageyama, “Oscillatory links of Fgf signaling and Hes7 in the segmentation clock”, Curr. Opin. Genet. Dev., 23 (2013), 484–490 | DOI

[39] Y. Takashima, T. Ohtsuka, A. Gonzalez, H. Miyachi, R. Kageyama, “Intronic delay is essential for oscillatory expression in the segmentation clock”, Proc. Natl. Acad. Sci. USA, 108 (2011), 3300–3305 | DOI

[40] Y. Harima, Y. Takashima, Y. Ueda, T. Ohtsuka, R. Kageyama, “Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene”, Cell. Rep., 3 (2012), 1–7 | DOI

[41] T. M. Khlebodarova, V. V. Kogai, E. A. Trifonova, V. A. Likhoshvai, “Dynamic landscape of the local translation at activated synapses”, Mol. Psychiatry, 23 (2018), 107–114 | DOI

[42] V. Likhoshvai, A. Ratushny, “Generalized Hill function method for modeling molecular processes”, J. Bioinform. Comput. Biol, 5 (2007), 521–531 | DOI

[43] J. T. Pougnet, E. Toulme, A. Martinez, D. Choquet, E. Hosy, E. Boué-Grabot, “ATP P2X receptors downregulate AMPA receptor trafficking and postsynaptic efficacy in hippocampal neurons”, Neuron, 83 (2014), 417–430 | DOI

[44] U. Narayanan, V. Nalavadi, M. Nakamoto, D. C. Pallas, S. Ceman, G. J. Bassell, S. T. Warren, “FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A”, J. Neurosci., 27 (2007), 14349–14357 | DOI

[45] U. Narayanan, V. Nalavadi, M. Nakamoto, G. Thomas, S. Ceman, G. J. Bassell, S. T. Warren, “S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade”, J. Biol. Chem, 283 (2008), 18478–18482 | DOI

[46] E. Chen, M. R. Sharma, X. Shi, R. K. Agrawal, S. Joseph, “Fragile X mental retardation protein regulates translation by binding directly to the ribosome”, Mol. Cell, 54 (2014), 407–417 | DOI

[47] K. Sharma, D. K. Fong, A. M. Craig, “Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation”, Mol. Cell. Neurosci, 31 (2006), 702–712 | DOI

[48] S. Okabe, “Molecular anatomy of the postsynaptic density”, Mol. Cell. Neurosci, 34 (2007), 503–518 | DOI

[49] J. C. Darnell, S. J. Van Driesche, C. Zhang, K. Y. Hung, A. Mele, C. E. Fraser, E. F. Stone, C. Chen, J. J. Fak, S. W. Chi et al, “FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism”, Cell, 146 (2011), 247–261 | DOI

[50] I. Napoli, V. Mercaldo, P. P. Boyl, B. Eleuteri, F. Zalfa, S. De Rubeis, D. Di Marino, E. Mohr, M. Massimi, M. Falconi et al, “The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP”, Cell, 134 (2008), 1042–1054 | DOI

[51] S. Pandey, P. K. Mahato, S. Bhattacharyya, “Metabotropic glutamate receptor 1 recycles to the cell surface in protein phosphatase 2A-dependent manner in non-neuronal and neuronal cell lines”, J. Neurochem., 131 (2014), 602–614 | DOI

[52] P. Majumder, J. F. Chu, B. Chatterjee, K. B. Swamy, C. J. Shen, “Co-regulation of mRNA translation by TDP-43 and Fragile X Syndrome protein FMRP”, Acta. Neuropathol, 132 (2016), 721–738 | DOI

[53] C. M. Bartley, R. A. O'Keefe, A. Blice-Baum, M. R. Mihailescu, X. Gong, L. Miyares, E. Karaca, A. Bordey, “Mammalian FMRP S499 is phosphorylated by CK2 and promotes secondary phosphorylation of FMRP”, eNeuro, 3 (2016) | DOI

[54] S. Ceman, W. T. O'Donnell, M. Reed, S. Patton, J. Pohl, S. T. Warren, “Phosphorylation influences the translation state of FMRP-associated polyribosomes”, Hum. Mol. Genet, 12 (2003), 3295–3305 | DOI

[55] V. A. Likhoshvai, V. V. Kogai, S. I. Fadeev, T. M. Khlebodarova, “O svyazi svoistv odnomernykh otobrazhenii upravlyayuschikh funktsii s khaosom v uravneniyakh spetsialnogo vida s zapazdyvayuschim argumentom”, Matem. biol. bioinform., 12:2 (2017), 385–397 | DOI | MR

[56] T. Pramparo, K. Pierce, M. V. Lombardo, C. Carter Barnes, S. Marinero, C. Ahrens-Barbeau, S. S. Murray, L. Lopez, R. Xu, E. Courchesne, “Prediction of autism by translation and immune/inflammation coexpressed genes in toddlers from pediatric community practice”, JAMA. Psychiatry, 72 (2015), 386–394 | DOI

[57] C. Onore, H. Yang, J. Van de Water, P. Ashwood, “Dynamic Akt/mTOR signaling in children with autism spectrum disorder”, Front. Pediatr, 5 (2017), 43 | DOI