Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_2_a14, author = {V. Yu. Lunin and N. L. Lunina and T. E. Petrova}, title = {Single particle study by {X-ray} diffraction: crystallographic approach}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {500--516}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a14/} }
TY - JOUR AU - V. Yu. Lunin AU - N. L. Lunina AU - T. E. Petrova TI - Single particle study by X-ray diffraction: crystallographic approach JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 500 EP - 516 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a14/ LA - en ID - MBB_2019_14_2_a14 ER -
%0 Journal Article %A V. Yu. Lunin %A N. L. Lunina %A T. E. Petrova %T Single particle study by X-ray diffraction: crystallographic approach %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 500-516 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a14/ %G en %F MBB_2019_14_2_a14
V. Yu. Lunin; N. L. Lunina; T. E. Petrova. Single particle study by X-ray diffraction: crystallographic approach. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 500-516. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a14/
[1] P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve et al, “PHENIX: a comprehensive Python-based system for macromolecular structure solution”, Acta Crystallographica D, 66 (2010), 213–221 | DOI
[2] M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. W. Leslie, A. McCoy et al, “Overview of the CCP4 suite and current developments”, Acta Crystallographica D, 67 (2011), 235–242 | DOI
[3] G. M. Sheldrick, “A short history of SHELX”, Acta Crystallographica A, 64 (2008), 112–122 | DOI | Zbl
[4] G. Bricogne, C. Vonrhein, C. Flensburg, M. Schiltz, W. Paciorek, “Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0”, Acta Crystallographica D, 59 (2003), 2023–2030 | DOI
[5] E. Blanc, P. Roversi, C. Vonrhein, C. Flensburg, S. M. Lea, G. Bricogne, “Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT”, Acta Crystallographica D, 60 (2004), 2210–2221 | DOI
[6] W. Minor, M. Cymborowski, Z. Otwinowski, M. Chruszcz, “HKL-3000: the integration of data reduction and structure solution-from diffraction images to an initial model in minutes”, Acta Crystallographica D, 62 (2006), 859–866 | DOI
[7] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, “The Protein Data Bank”, Nucleic Acids Research, 28 (2000), 235–242 | DOI
[8] V. Y. Lunin, N. L. Lunina, T. E. Petrova, “The biological crystallography without crystals”, Mathematical Biology and Bioinformatics, 12:1 (2017), 55–72 | DOI
[9] J. C.H. Spence, “XFELs for structure and dynamics in biology”, IUCrJ, 4 (2017), 322–339 | DOI
[10] J. Standfuss, J. Spence, “Serial crystallography at synchrotrons and X-ray lasers”, IUCrJ, 4 (2017), 100–101 | DOI
[11] A. Aquila, A. Barty, C. Bostedt, S. Boutet, G. Carini, D. dePonte, P. Drell, S. Doniach, K. H. Downing, T. Earnest et al, “The linac coherent light source single particle imaging road map”, Structural Dynamics, 2 (2015) | DOI
[12] K. Ayyer, G. Geloni, V. Kocharyan, E. Saldin, S. Serkez, O. Yefanov, I. Zagorodnov, “Perspectives for imaging single protein molecules with the present design of the European XFEL”, Structural Dynamics, 2 (2015) | DOI | Zbl
[13] B. J. Daurer, K. Okamoto, J. Bielecki, F. R.N. C. Maia, K. Muhlig, M. M. Seibert, M. F. Hantke, C. Nettelblad, W. H. Benner, M. Svenda et al, “Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses”, IUCrJ, 4 (2017), 251–262 | DOI
[14] L. D. Landau, E. M. Lifshitz, Mechanics, 3d edition, Butterworth-Heinemann, 1976, 224 pp. | MR
[15] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, 4th edition, Butterworth-Heinemann, 1980, 402 pp. | MR
[16] A. G. Urzhumtsev, V. Y. Lunin, “Introduction to crystallographic refinement of macromolecular atomic models”, Crystallography Reviews, 25 (2019), 164–262 | DOI
[17] L. Urzhumtseva, B. Klaholz, A. Urzhumtsev, “On effective and optical resolutions of diffraction data sets”, Acta Crystallographica D, 69 (2013), 1921–1934 | DOI
[18] W. Rudin, Functional analysis, McGraw-Hill Book Company, 1973 | MR | Zbl
[19] J. A. Rodriguez, R. Xu, C. C. Chen, Z. Huang, H. Jiang, A. L. Chen, K. S. Raines, Jr. A. Pryor, D. Nam, L. Wiegart et al, “Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells”, IUCrJ, 2 (2015), 575–583 | DOI
[20] T. Ekeberg, M. Svenda, C. Abergel, F. R. N. C. Maia, V. Seltzer, J. M. Claverie, M. Hantke, O. Jönsson, C. Nettelblad, G. van der Schot et al, “Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser”, Physical Review Letters, 114 (2015) | DOI
[21] A. Munke, J. Andreasson, A. Aquila, S. Awel, K. Ayyer, A. Barty, R. J. Bean, P. Berntsen, J. Bielecki, S. Boutet et al, “Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source”, Scientific Data, 3 (2016) | DOI
[22] V. Y. Lunin, N. L. Lunina, T. E. Petrova, M. W. Baumstark, A. G. Urzhumtsev, “Maskbased approach to phasing of single-particle diffraction data”, Acta Crystallographica D, 72 (2016), 147–157 | DOI
[23] V. Y. Lunin, N. L. Lunina, T. E. Petrova, M. W. Baumstark, A. G. Urzhumtsev, “Maskbased approach to phasing of single-particle diffraction data. II. Likelihood-based selection criteria”, Acta Crystallographica D, 75 (2019), 79–89 | DOI
[24] E. Meijering, “A chronology of interpolation: from ancient astronomy to modern signal and image processing”, Proceedings of the IEEE, 90 (2002), 319–342 | DOI
[25] V. A. Kotel'nikov, “On the transmission capacity of 'ether' and wire in electric communications”, Physics-Uspekhi, 49:7 (2006), 736–744 | DOI
[26] D. Sayre, “Some implications of a theorem due to Shannon”, Acta Crystallographica, 5 (1952), 843 | DOI
[27] G. Bricogne, “Geometric sources of redundancy in intensity data and their use for phase determination”, Acta Crystallographica A, 30 (1974), 395–405 | DOI
[28] G. Bricogne, “Methods and programs for direct-space exploitation of geometric redundancies”, Acta Crystallographica A, 32 (1976), 832–847 | DOI
[29] V. Y. Lunin, N. L. Lunina, “Repairing of the diffraction pattern in the X-ray freeelectron laser study of biological particles”, Advanced Mathematical Models Applications, 3 (2018), 117–127
[30] A. Misnovs, A. Mishnev, “On phasing of oversampled diffraction data”, 32-nd European Crystallographic Meeting, Book of abstracts (Vienna, Austria, 18.–23.08), 2019, 706 (accessed 06.11.2019) https://ecm2019.org/fileadmin/user_upload/k_ecm2019/images/Programm/ECM32AbstractBooklet_18.08.2019.pdf | MR
[31] V. Y. Lunin, N. L. Lunina, T. E. Petrova, “The use of connected masks for reconstructing the single particle image from X-ray diffraction data”, Mathematical Biology and Bioinformatics, 10, Suppl. (2014), t1–t19 | DOI
[32] N. L. Lunina, T. E. Petrova, A. G. Urzhumtsev, V. Y. Lunin, “The use of connected masks for reconstructing the single particle image from X-ray diffraction data. II. The dependence of the accuracy of the solution on the sampling step of experimental data”, Mathematical Biology and Bioinformatics, 10, Suppl. (2015), t56–t72 | DOI
[33] N. L. Lunina, T. E. Petrova, A. G. Urzhumtsev, V. Y. Lunin, “The Use of Connected Masks for Reconstructing the Single Particle Image from X-Ray Diffraction Data. III. Maximum-Likelihood Based Strategies to Select Solution of the Phase Problem”, Mathematical Biology and Bioinformatics, 13:Suppl. (2018), t70–t83 | DOI