Dynamics modeling of nitrogen compounds in microalgae cells. 2. Chemostat
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 450-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work focuses on dynamics modeling of nitrogen compounds in microalgae cells under chemostat conditions. The analysis of classical models (Michaelis–Menten, Monod, Droop), which describe the kinetics of substrate-dependent growth of microalgae, was carried out. Classical models are shown to be applicable provided that the physicochemical parameters of the medium such as temperature, cell irradiation, etc are constant. As an alternative approach, the possibility of using linear splines in kinetics modeling of nitrate absorption by microalgae is shown. For the conditions of the chemostat, particular solutions for the generalized model of the dynamics of nitrogen compounds in the cells of microalgae considered in the first part of the work were obtained, and boundary conditions for the culture growth at unlimited nitrogen were determined. For limited growth, the equation for both the dependence of the specific growth rate on the intracellular nitrogen content, which coincides in form with the Droop model and the dependence of the specific growth rate on the extracellular concentration of nitrogen, which coincides in form with the Monod model were obtained. The species-specific coefficients of the equations such as the maximum specific rate of nitrogen absorption, the maximum specific rate of synthesis of structural components, the maximum content of reserve forms of nitrogen, the minimum share of structural forms of nitrogen in the total cell content were determined.
@article{MBB_2019_14_2_a12,
     author = {A. S. Lelekov and R. P. Trenkenshu},
     title = {Dynamics modeling of nitrogen compounds in microalgae cells. 2. {Chemostat}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {450--463},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a12/}
}
TY  - JOUR
AU  - A. S. Lelekov
AU  - R. P. Trenkenshu
TI  - Dynamics modeling of nitrogen compounds in microalgae cells. 2. Chemostat
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 450
EP  - 463
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a12/
LA  - ru
ID  - MBB_2019_14_2_a12
ER  - 
%0 Journal Article
%A A. S. Lelekov
%A R. P. Trenkenshu
%T Dynamics modeling of nitrogen compounds in microalgae cells. 2. Chemostat
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 450-463
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a12/
%G ru
%F MBB_2019_14_2_a12
A. S. Lelekov; R. P. Trenkenshu. Dynamics modeling of nitrogen compounds in microalgae cells. 2. Chemostat. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 450-463. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a12/

[1] R. P. Trenkenshu, A. S. Lelekov, “Modelirovanie dinamiki azotistykh soedinenii v kletkakh mikrovodoroslei. 1. Nakopitelnaya kultura”, Mat. biol. i bioinf., 13:2 (2018), 348–359 | DOI

[2] R. P. Trenkenshu, “Rost mikrovodoroslei pri perekhode ot temnoty k postoyannomu osvescheniyu”, Voprosy sovremennoi algologii, 2018, no. 2 (data obrascheniya: 10.11.2019) http://algology.ru/1350

[3] J. Monod, “The growth of bacterial cultures”, Ann. Rev. Microbiol., 3 (1949), 371–394 | DOI

[4] R. P. Trenkenshu, A. S. Lelekov, Modelirovanie rosta mikrovodoroslei v kulture, Konstanta, Belgorod, 2017, 152 pp. | DOI

[5] G. Bougarana, O. Bernard, A. Sciandra, “Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus”, J. Theor. Biol., 265:3 (2010), 443–454 | DOI | MR

[6] O. Bernard, F. Mairet, B. Chachuat, “Modelling of microalgae culture systems with applications to control and optimization”, Adv. Biochem. Eng. Biotechnol., 2015 | DOI

[7] M. E. Malerba, K. Heimann, S. R. Connolly, “Improving dynamic phytoplankton reserveutilization models with an indirect proxy for internal nitrogen”, J. Theor. Biol., 404 (2016), 1–9 | DOI

[8] R. C. Dugdale, “Nutrient limitation in the sea: dynamics, identification and significance”, Limnol. Oceanogr., 12:4 (1967), 685–695 | DOI

[9] R. W. Eppley, J. L. Coatsworth, “Uptake of nitrate and nitrite by Ditylum brightwellii-kinetics and mechanisms”, J. Phyc., 4:2 (1968), 151–156 | DOI

[10] Polikarpov G. G. (red.), Molismologiya Chernogo morya, Nauk. dumka, K., 1992, 304 pp.

[11] R. W. Eppley, J. N. Rogers, J. J. McCarthy, “Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton”, Limnol. Oceanogr., 14:6 (1969), 912–920 | DOI

[12] G. Y. Rhee, I. J. Gotham, “The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation”, Limnol. Oceanogr., 26 (1981), 635–648 | DOI

[13] W. R. Ullrich, J. Lazarova, C. I. Ullrich, F. G. Witt, P. J. Aparicio, “Nitrate uptake and extracellular alkalinization by thegreen alga Hydrodictyon reticulatumin blue and red light”, J. Exp. Bot., 49:324 (1998), 1157–1162 | DOI

[14] M. E. Baird, S. M. Emsley, J. M. Mcglade, “Modeling the interacting effects of nutrient uptake, light capture and temperature on phytoplankton growth”, J. Plan. Res., 23:8 (2001), 829–840 | DOI

[15] K. H. Lee, H. J. Jeong, H. J. Kim, A. S. Lim, “Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: effect of light intensity”, Algae, 32:2 (2017), 139–153 | DOI

[16] V. N. Egorov, V. N. Popovichev, S. B. Gulin, N. I. Bobko, N. Yu. Rodionova, T. V. Tsarina, Yu. G. Marchenko, “Vliyanie pervichnoi produktsii fitoplanktona na oborot biogennykh elementov v pribrezhnoi akvatorii Sevastopolya (Chernoe more)”, Biologiya morya, 44:3 (2018), 207–214

[17] R. W. Eppley, E. H. Renger, “Nitrogen assimilation of an oceanic diatom in nitrogenlimited continuous culture”, J. Phyc., 10:1 (1974), 15–23 | DOI

[18] J. Berges, “Miniview: algal nitrate reductases”, Eur. J. Phyc., 32:1 (1997), 3–8 | DOI

[19] E. Sanz-Luque, A. Chamizo-Ampudia, A. Llamas, A. Galvan, E. Fernandez, “Understanding nitrate assimilation and its regulation in microalgae”, Front. Plant. Sci., 2015 | DOI

[20] J. Caperon, “Population growth response of Isochrysis Galbana to nitrate variation at limiting concentrations”, Ecology, 49:5 (1968), 866–872 | DOI

[21] P. V. Fursova, A. P. Levich, “Matematicheskoe modelirovanie v ekologii soobschestv”, Problemy okruzhayuschei sredy i prirodnykh resursov, 8:4 (2002), 2035–1045 | MR

[22] S. T. Dyhrman, “Nutrients and their acquisition: phosphorus physiology in microalgae”, The Physiology of Microalgae, Developments in Applied Phycology, 6, eds. M. Borowitzka, J. Beardall, J. Raven, Springer, 2016, 155–183 | DOI

[23] P. K. Bienfang, “Steady state analysis of nitrate-ammonium assimilation by phytoplankton”, Limnol. Oceanogr., 20:3 (1975), 402–411 | DOI

[24] K. J. Flynn, “The determination of nitrogen status in microalgae”, Mar. Ecol. Progr. Ser., 61 (1990), 297–307 | DOI

[25] M. R. Droop, “25 years of algal growth kinetics a personal view”, Bot. Mar., 26:3 (1983), 99–112 | DOI

[26] K. J. Flynn, “A mechanistic model for describing dynamic multi-nutrient, light, temperature interaction in phytoplankton”, J. Plan. Res., 23 (2001), 977–997 | DOI

[27] A. V. Kuznetsova, S. I. Pogosyan, E. N. Voronova, I. V. Konyukhov, A. B. Rubin, “Vliyanie azota na rost i fotosinteticheskii apparat mikrovodoroslei”, Voda: khimiya i ekologiya, 2012, no. 4, 68–76

[28] O. Perez-Garcia, F. Escalante, L. de-Bashan, Y. Bashan, “Heterotrophic cultures of microalgae: Metabolism and potential products”, Water Research, 45:1 (2011), 11–36 | DOI

[29] V. A. Silkin, K. M. Khailov, Bioekologicheskie mekhanizmy upravleniya v akvakulture, Nauka, L., 1988, 230 pp.

[30] R. P. Trenkenshu, “Vliyanie sveta na makromolekulyarnyi sostav mikrovodoroslei v nepreryvnoi kulture nevysokoi plotnosti (Chast 1)”, Voprosy sovremennoi algologii, 2017, no. 2 (data obrascheniya: 10.11.2019) http://algology.ru/1180