Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_2_a12, author = {A. S. Lelekov and R. P. Trenkenshu}, title = {Dynamics modeling of nitrogen compounds in microalgae cells. 2. {Chemostat}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {450--463}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a12/} }
TY - JOUR AU - A. S. Lelekov AU - R. P. Trenkenshu TI - Dynamics modeling of nitrogen compounds in microalgae cells. 2. Chemostat JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 450 EP - 463 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a12/ LA - ru ID - MBB_2019_14_2_a12 ER -
A. S. Lelekov; R. P. Trenkenshu. Dynamics modeling of nitrogen compounds in microalgae cells. 2. Chemostat. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 450-463. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a12/
[1] R. P. Trenkenshu, A. S. Lelekov, “Modelirovanie dinamiki azotistykh soedinenii v kletkakh mikrovodoroslei. 1. Nakopitelnaya kultura”, Mat. biol. i bioinf., 13:2 (2018), 348–359 | DOI
[2] R. P. Trenkenshu, “Rost mikrovodoroslei pri perekhode ot temnoty k postoyannomu osvescheniyu”, Voprosy sovremennoi algologii, 2018, no. 2 (data obrascheniya: 10.11.2019) http://algology.ru/1350
[3] J. Monod, “The growth of bacterial cultures”, Ann. Rev. Microbiol., 3 (1949), 371–394 | DOI
[4] R. P. Trenkenshu, A. S. Lelekov, Modelirovanie rosta mikrovodoroslei v kulture, Konstanta, Belgorod, 2017, 152 pp. | DOI
[5] G. Bougarana, O. Bernard, A. Sciandra, “Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus”, J. Theor. Biol., 265:3 (2010), 443–454 | DOI | MR
[6] O. Bernard, F. Mairet, B. Chachuat, “Modelling of microalgae culture systems with applications to control and optimization”, Adv. Biochem. Eng. Biotechnol., 2015 | DOI
[7] M. E. Malerba, K. Heimann, S. R. Connolly, “Improving dynamic phytoplankton reserveutilization models with an indirect proxy for internal nitrogen”, J. Theor. Biol., 404 (2016), 1–9 | DOI
[8] R. C. Dugdale, “Nutrient limitation in the sea: dynamics, identification and significance”, Limnol. Oceanogr., 12:4 (1967), 685–695 | DOI
[9] R. W. Eppley, J. L. Coatsworth, “Uptake of nitrate and nitrite by Ditylum brightwellii-kinetics and mechanisms”, J. Phyc., 4:2 (1968), 151–156 | DOI
[10] Polikarpov G. G. (red.), Molismologiya Chernogo morya, Nauk. dumka, K., 1992, 304 pp.
[11] R. W. Eppley, J. N. Rogers, J. J. McCarthy, “Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton”, Limnol. Oceanogr., 14:6 (1969), 912–920 | DOI
[12] G. Y. Rhee, I. J. Gotham, “The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation”, Limnol. Oceanogr., 26 (1981), 635–648 | DOI
[13] W. R. Ullrich, J. Lazarova, C. I. Ullrich, F. G. Witt, P. J. Aparicio, “Nitrate uptake and extracellular alkalinization by thegreen alga Hydrodictyon reticulatumin blue and red light”, J. Exp. Bot., 49:324 (1998), 1157–1162 | DOI
[14] M. E. Baird, S. M. Emsley, J. M. Mcglade, “Modeling the interacting effects of nutrient uptake, light capture and temperature on phytoplankton growth”, J. Plan. Res., 23:8 (2001), 829–840 | DOI
[15] K. H. Lee, H. J. Jeong, H. J. Kim, A. S. Lim, “Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: effect of light intensity”, Algae, 32:2 (2017), 139–153 | DOI
[16] V. N. Egorov, V. N. Popovichev, S. B. Gulin, N. I. Bobko, N. Yu. Rodionova, T. V. Tsarina, Yu. G. Marchenko, “Vliyanie pervichnoi produktsii fitoplanktona na oborot biogennykh elementov v pribrezhnoi akvatorii Sevastopolya (Chernoe more)”, Biologiya morya, 44:3 (2018), 207–214
[17] R. W. Eppley, E. H. Renger, “Nitrogen assimilation of an oceanic diatom in nitrogenlimited continuous culture”, J. Phyc., 10:1 (1974), 15–23 | DOI
[18] J. Berges, “Miniview: algal nitrate reductases”, Eur. J. Phyc., 32:1 (1997), 3–8 | DOI
[19] E. Sanz-Luque, A. Chamizo-Ampudia, A. Llamas, A. Galvan, E. Fernandez, “Understanding nitrate assimilation and its regulation in microalgae”, Front. Plant. Sci., 2015 | DOI
[20] J. Caperon, “Population growth response of Isochrysis Galbana to nitrate variation at limiting concentrations”, Ecology, 49:5 (1968), 866–872 | DOI
[21] P. V. Fursova, A. P. Levich, “Matematicheskoe modelirovanie v ekologii soobschestv”, Problemy okruzhayuschei sredy i prirodnykh resursov, 8:4 (2002), 2035–1045 | MR
[22] S. T. Dyhrman, “Nutrients and their acquisition: phosphorus physiology in microalgae”, The Physiology of Microalgae, Developments in Applied Phycology, 6, eds. M. Borowitzka, J. Beardall, J. Raven, Springer, 2016, 155–183 | DOI
[23] P. K. Bienfang, “Steady state analysis of nitrate-ammonium assimilation by phytoplankton”, Limnol. Oceanogr., 20:3 (1975), 402–411 | DOI
[24] K. J. Flynn, “The determination of nitrogen status in microalgae”, Mar. Ecol. Progr. Ser., 61 (1990), 297–307 | DOI
[25] M. R. Droop, “25 years of algal growth kinetics a personal view”, Bot. Mar., 26:3 (1983), 99–112 | DOI
[26] K. J. Flynn, “A mechanistic model for describing dynamic multi-nutrient, light, temperature interaction in phytoplankton”, J. Plan. Res., 23 (2001), 977–997 | DOI
[27] A. V. Kuznetsova, S. I. Pogosyan, E. N. Voronova, I. V. Konyukhov, A. B. Rubin, “Vliyanie azota na rost i fotosinteticheskii apparat mikrovodoroslei”, Voda: khimiya i ekologiya, 2012, no. 4, 68–76
[28] O. Perez-Garcia, F. Escalante, L. de-Bashan, Y. Bashan, “Heterotrophic cultures of microalgae: Metabolism and potential products”, Water Research, 45:1 (2011), 11–36 | DOI
[29] V. A. Silkin, K. M. Khailov, Bioekologicheskie mekhanizmy upravleniya v akvakulture, Nauka, L., 1988, 230 pp.
[30] R. P. Trenkenshu, “Vliyanie sveta na makromolekulyarnyi sostav mikrovodoroslei v nepreryvnoi kulture nevysokoi plotnosti (Chast 1)”, Voprosy sovremennoi algologii, 2017, no. 2 (data obrascheniya: 10.11.2019) http://algology.ru/1180