The influence of trophic interactions in the plankton community on its spatiotemporal dynamics
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 393-405.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present work considers a model of spatiotemporal dynamics for plankton community in a vertical column of water. Usually mesozooplankton (e.g. copepods) is considered as the main grazer in models of plankton systems. However, numerous studies have appeared recently that microzooplankton, not copepods, are the primary grazers in oceanic ecosystems. This work presents the model with microzooplankton and copepods as phytoplankton predators. Functional response for copepod feeding includes its preference for phytoplankton and microzooplankton. The effects of half saturation constants of zooplankton and diet variants on the stability of spatial homogeneous equilibriums was studied. In the case of effective grazing by mesozooplankton the system demonstrates stable coexistence of both zooplankton groups if phytoplankton carrying capacity is sufficient for it. In the case if microzooplankton protists are ineffective grazers – they are displaced by copepods or survive in a small number if their portion in the copepods diet is insignificant. The phenomenon of multistability has been identified in the system for copepod diet with microzooplankton preference. It means that several equilibria are stable at the same time, and the dynamics of the system are determined by the initial conditions. Allowing for spatial dependence in the modeled plankton community causes spatial structures appearance induced by Turing instability. It means that the system with diffusion only is able to induce stationary vertical profiles of plankton biomass. Such system state is possible if both predators are effective grazers and the microzooplankton prevails in the copepods diet.
@article{MBB_2019_14_2_a10,
     author = {E. E. Giricheva},
     title = {The influence of trophic interactions in the plankton community on its spatiotemporal dynamics},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {393--405},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a10/}
}
TY  - JOUR
AU  - E. E. Giricheva
TI  - The influence of trophic interactions in the plankton community on its spatiotemporal dynamics
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 393
EP  - 405
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a10/
LA  - ru
ID  - MBB_2019_14_2_a10
ER  - 
%0 Journal Article
%A E. E. Giricheva
%T The influence of trophic interactions in the plankton community on its spatiotemporal dynamics
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 393-405
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a10/
%G ru
%F MBB_2019_14_2_a10
E. E. Giricheva. The influence of trophic interactions in the plankton community on its spatiotemporal dynamics. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 393-405. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a10/

[1] P. J. S. Franks, L. J. Walstad, “Phytoplankton patches at fronts: a model of formation and response to wind events”, Journal of Marine Research, 55:1 (1997), 1–29 | DOI | MR

[2] G. Lacroix, P. Nival, “Influence of meteorological variability on primary production dynamics in the Ligurian Sea (NW Mediterranean Sea) with a 1D hydrodynamic/biological model”, Journal of Marine Systems, 16 (1998), 23–50 | DOI

[3] J. Wroblewski, J. L. Sarmiento, G. R. Flierl, “An Ocean Basin Scale Model of plankton dynamics in the North Atlantic: 1. Solutions For the climatological oceanographic conditions in May”, Global Biogeochemical Cycles, 2 (1988), 199–218 | DOI

[4] K. Banse, “Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea”, Primary Productivity and Biogeochemical Cycles in the Sea, Springer, Boston, 1992, 409–440 | DOI

[5] P. G. Verity, P. Wassmann, M. E. Frischer, M. H. Howard-Jonesa, A. E. Allen, “Grazing, growth and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47 N, 18 W”, Deep Sea Research Part I: Oceanographic Research Papers, 40:9 (1993), 1793–1814 | DOI

[6] S. Neuer, T. J. Cowles, “Protist herbivory in the Oregon upwelling system”, Marine Ecology Progress Series, 113 (1994), 147–162 | DOI

[7] C. A. Edwards, H. P. Batchelder, T. M. Powell, “Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system”, Journal of Plankton Research, 22:9 (2000), 1619–1648 | DOI

[8] E. B. Sherr, B. F. Sherr, “Role of microbes in pelagic food webs: a revised concept”, Limnology and Oceanography, 33 (1988), 1225–1227 | DOI

[9] E. Fileman, A. Petropavlovsky, R. Harris, “Grazing by the copepods Calanus helgolandicus and Acartia clausi on the protozooplankton community at station L4 in the Western English Channel”, Journal of Plankton Research, 32:5 (2010), 709–724 | DOI

[10] F. C. Hansen, M. Reckermann, W. C.M. Klein Breteler, R. Riegman, “Phaeocystis blooming enhanced by copepod predation on protozoa Evidence from incubation experiments”, Marine Ecology Progress Series, 102 (1993), 51–57 | DOI

[11] D. J. Gifford, M. J. Dagg, “Feeding of the estuarine copepod Acartia tonsa dana: Carnivory vs. herbivory in natural microplankton assemblages”, Bulletin of Marine Science, 43 (1988), 458–468

[12] E. Saiz, A. Calbet, “Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations”, Hydrobiologia, 666:1 (2011), 181–196 | DOI

[13] M. G. J. Löder, C. Meunier, K. H. Wiltshire, M. Boersma, N. Aberle, “The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea”, Marine Biology, 158:7 (2011), 1551–1580 | DOI

[14] C. S. Holling, “Some characteristics of simple types of predation and parasitism”, The Canadian Entomologist, 91 (1959), 385–399 | DOI

[15] T. Fenchel, “Marine plankton food chains”, Annual Review of Ecology, Evolution, and Systematics, 19 (1988), 19–38 | DOI

[16] B. Chen, E. A. Laws, H. Liu, B. Huang, “Estimating microzooplankton grazing half-saturation constants from dilution experiments with nonlinear feeding kinetics”, Limnology and Oceanography, 59:3 (2014), 639–644 | DOI

[17] M. L. Rosenzweig, R. H. MacArthur, “Graphical representation and stability conditions of predator-prey interactions”, The American Naturalist, 97:895 (1963), 209–223 | DOI

[18] R. G. Campbell, E. B. Sherr, C. J. Ashjian, S. Plourde, B. F. Sherr, V. Hill, D. A. Stockwell, “Mesozooplankton prey preference and grazing impact in the western Arctic Ocean”, Deep Sea Research Part II: Topical Studies in Oceanography, 56:17 (2009), 1274–1289 | DOI

[19] K. W. Tang, H. H. Jakobsen, A. W. Visser, “Phaeocystis globosa (Prymnesiophyceae) and the planktonic food web: feeding, growth, and trophic interactions among grazers”, Limnology and Oceanography, 46 (2001), 1860–1870 | DOI

[20] G. S. Kleppel, “On the diets of calanoid copepods”, Marine Ecology Progress Series, 99 (1993), 183–195 | DOI

[21] M. D. Ohman, J. A. Runge, “Sustained fecundity when phytoplankton resources are in short supply: omnivory by Calanus finmarchicus in the Gulf of St. Lawrence”, Limnology and Oceanography, 39 (1994), 21–36 | DOI

[22] R. B. Rivkin, J. N. Putland, M. R. Anderson, D. Deibel, “Microzooplankton bacterivory and herbivory in the NE subarctic Pacific”, Deep Sea Research Part II: Topical Studies in Oceanography, 46 (1999), 2579–2618 | DOI

[23] N. D. Lewis, A. Morozov, M. N. Breckels, M. Steinke, E. A. Codling, “Multitrophic interactions in the sea: assessing the effect of infochemical-mediated foraging in a 1-d spatial model”, Mathematical Modelling of Natural Phenomena, 8:6 (2013), 25–44 | DOI | MR | Zbl

[24] V. A. Vasilev, Yu. M. Romanovskii, V. G. Yakhno, Avtovolnovye protsessy, ed. V.S. Chernavskii, Nauka, M., 1987

[25] C. Mulder, A. J. Hendriks, “Half-saturation constants in functional responses”, Global Ecology and Conservation, 2 (2014), 161–169 | DOI