Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_2_a1, author = {I. A. Borisova and O. A. Kutnenko}, title = {Cleaning data sets with diagnostic errors in the high-dimensional feature spaces}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {464--476}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a1/} }
TY - JOUR AU - I. A. Borisova AU - O. A. Kutnenko TI - Cleaning data sets with diagnostic errors in the high-dimensional feature spaces JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 464 EP - 476 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a1/ LA - ru ID - MBB_2019_14_2_a1 ER -
%0 Journal Article %A I. A. Borisova %A O. A. Kutnenko %T Cleaning data sets with diagnostic errors in the high-dimensional feature spaces %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 464-476 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a1/ %G ru %F MBB_2019_14_2_a1
I. A. Borisova; O. A. Kutnenko. Cleaning data sets with diagnostic errors in the high-dimensional feature spaces. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 2, pp. 464-476. http://geodesic.mathdoc.fr/item/MBB_2019_14_2_a1/
[1] T. de Waal, J. Pannekoek, S. Scholtus, Handbook of Statistical Data Editing and Imputation. Hoboken, John Wiley and Sons, Inc., New Jersey, 2011, 456 pp. | DOI
[2] V. Barnett, T. Lewis, Outliers in Statistical Data, John Wiley and Sons, Chichester, 1994, 584 pp. | MR | Zbl
[3] Jason W. Osborne, Best Practices in Data Cleaning: A Complete Guide to Everything You Need to Do Before and After Collecting Your Data, 1st Edition, SAGE Publication, Inc., Los Angeles, 2013, 296 pp. | DOI
[4] Luca Greco, Robust Methods for Data Reduction Alessio Farcomeni, Chapman and Hall/CRC, 2015, 297 pp.
[5] C. M. Teng, “A comparison of noise handling techniques”, Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference, 2001, 269–273
[6] C. C. Aggarwal, P. S. Yu, “Outlier detection for high dimensional data”, Proc. ACM SIGMOD Int. Conf. on Management of Data (California, USA, 2001) | DOI | MR
[7] Guyon I., Weston J., Barnhill S., Vapnik V., “Gene Selection for Cancer Classification using Support Vector Machines”, Machine Learning, 46:1 (2002), 389–422 | DOI | Zbl
[8] M. M. Breunig, H. P. Kriegel, R. T. Ng, J. R. Sander, “LOF: Identifying Density-based Local Outliers”, Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, 93–104 | DOI
[9] F. T. Liu, K. M. Ting, Z. H. Zhou, “Isolation forest”, Proceedings of ICDM'08, Eighth IEEE International Conference on Data Mining, 2008, 413–422 | DOI
[10] H. P. Kriegel, M. Schubert, A. Zimek, “Angle-based outlier detection in high-dimensional data”, Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2008, 444–452 | DOI
[11] Y. Yang, X. Wu, X. Zhu, “Dealing with Predictive-but-Unpredictable Attributes in Noisy Data Sources”, Proceedings of 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, Springer, 2004 | DOI
[12] C. E. Brodley, M. A. Friedl, “Identifying Mislabeled Training Data”, Journal of Artificial Intelligence Research, 11 (1999), 131–167 | DOI | Zbl
[13] I. A. Borisova, O. A. Kutnenko, “Ispravlenie diagnosticheskikh oshibok v tselevom priznake s pomoschyu funktsii konkurentnogo skhodstva”, Matematicheskaya biologiya i bioinformatika, 13:1 (2018), 38–49
[14] I. A. Borisova, O. A. Kutnenko, “Tsenzurirovanie oshibochno klassifitsirovannykh ob'ektov vyborki”, Mashinnoe obuchenie i analiz dannykh, 1:11 (2015), 1632–1641
[15] Prostate Cancer Dataset, (accessed January 2019) http://www.bioinf.ucd.ie/people/ian/Singh.txt
[16] N. G. Zagoruiko, I. A. Borisova, V. V. Dyubanov, O. A. Kutnenko, “Methods of recognition based on the function of rival similarity”, Pattern Recognition and Image Analysis, 18:1 (2008), 1–6 | DOI
[17] N. G. Zagoruiko, Kognitivnyi analiz dannykh, Akademicheskoe izd-vo GEO, Novosibirsk, 2013, 186 pp.
[18] A. G. Arkadev, E. M. Braverman, Obuchenie mashiny klassifikatsii ob'ektov, Nauka, M., 1971, 112 pp.
[19] K. V. Vorontsov, A. O. Koloskov, “Profili kompaktnosti i vydelenie opornykh ob'ektov v metricheskikh algoritmakh klassifikatsii”, Iskusstvennyi intellekt, 2006, no. 2, 30–33
[20] M. I. Shlezinger, “O samoproizvolnom razdelenii obrazov”, Chitayuschie avtomaty i raspoznavanie obrazov, sb. nauch. trudov, Naukova dumka, Kiev, 1965, 46–61
[21] N. G. Zagoruiko, Prikladnye metody analiza dannykh i znanii, Izd. IM SO RAN, Novosibirsk, 1999, 270 pp.
[22] S. A. Subbotin, “Kompleks kharakteristik i kriteriev sravneniya obuchayuschikh vyborok dlya resheniya zadach diagnostiki i raspoznavaniya obrazov”, Matematichni mashini i sistemi, 2010, no. 1, 25–39 | MR
[23] N. G. Zagoruiko, O. A. Kutnenko, “Recognition methods based on the AdDel algorithm”, Pattern Recognition and Image Analysis, 14:2 (2004), 198–204