Modeling the dynamics of predator-prey community with age structures
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 77-93

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of the predator-prey community has been proposed with specific stages of individual development and the seasonality of breeding processes. It is assumed each of the species has an age structure with two stages of development. The case typical for the community “Arctic fox – rodents” is modeled. An analytical and numerical study of the model proposed is made. It is shown that periodic, quasi-periodic and chaotic oscillations can occur in the system, as well as a shift in the dynamics mode as a result of changes in the current sizes of the community's populations. The model proposed demonstrates long-period oscillations with time delay like auto-oscillations in the classical model of Lotka–Volterra. It is shown that a transition from stable dynamics to quasi-periodic oscillations and vise verse is possible in the system, while an increase in the values of the half capturing saturation coefficient reduces the possibility of quasiperiodic oscillation emergence. Simulations demonstrate the growth in predator’s consumption of the prey average number expands the zones of multistability and quasi-periodic dynamics in the stability area of nontrivial fixed point. Therefore, the variation of the current population size of the community can lead to a change in the dynamic mode observed. The scenarios of transition from stationary dynamics to community's population fluctuations are analyzed with different values of population parameters determining the dynamics of both species and their interaction coefficient. The model shows both sustainable community development and various complex fluctuations of interacting species. At the same time, the prey dynamics affects the predator one: the prey population fluctuations initiate predator oscillations like prey’s fluctuations, while the intrapopulation parameters of the predator can give to both stationary and fluctuating dynamic modes.
@article{MBB_2019_14_1_a9,
     author = {G. P. Neverova and O. L. Zhdanova and E. Ya. Frisman},
     title = {Modeling the dynamics of predator-prey community with age structures},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {77--93},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a9/}
}
TY  - JOUR
AU  - G. P. Neverova
AU  - O. L. Zhdanova
AU  - E. Ya. Frisman
TI  - Modeling the dynamics of predator-prey community with age structures
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 77
EP  - 93
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a9/
LA  - ru
ID  - MBB_2019_14_1_a9
ER  - 
%0 Journal Article
%A G. P. Neverova
%A O. L. Zhdanova
%A E. Ya. Frisman
%T Modeling the dynamics of predator-prey community with age structures
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 77-93
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a9/
%G ru
%F MBB_2019_14_1_a9
G. P. Neverova; O. L. Zhdanova; E. Ya. Frisman. Modeling the dynamics of predator-prey community with age structures. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 77-93. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a9/

[1] V. Volterra, Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 2004, 288 pp.

[2] A. J. Nicholson, “Supplement: the Balance of Animal Populations”, Journal of Animal Ecology, 2:1 (1933), 131–178 | DOI | DOI

[3] A. J. Nicholson, V. A. Bailey, “The Balance of Animal Populations”, Proceedings of the Zoological Society of London, 105:3 (1935), 551–598 | DOI | DOI

[4] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. MGU, ser. «Matematika i mekhanika», 6:1 (1937), 1–26

[5] A. Rosenzweig, R. H. MacArthur, “Graphical representation and stability conditions of predator-prey interaction”, Amer. Natur., 97 (1963), 209–223 | DOI | DOI

[6] A. N. Kolmogorov, “Kachestvennoe izuchenie matematicheskikh modelei dinamiki populyatsii”, Problemy kibernetiki, 1972, no. 5, 100–106

[7] A. D. Bazykin, Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 181 pp. | MR | MR

[8] M. P. Hassell, “Host-parasitoid population dynamics”, Journal of Animal Ecology, 69 (2000), 543–566 | DOI | DOI

[9] A. I. Abakumov, “Modelirovanie soobschestv s uchetom neopredelennosti dannykh”, Sibirskii ekologicheskii zhurnal, 2001, no. 5, 559–563

[10] A. I. Abakumov, M. G. Kazakova, “Prostranstvennaya model soobschestva vidov”, Dalnevostochnyi matematicheskii zhurnal, 3:1 (2002), 102–107 | MR | MR

[11] G. Yu. Riznichenko, A. B. Rubin, Biofizicheskaya dinamika produktsionnykh protsessov, Regulyarnaya i khaoticheskaya dinamika, Izhevskii institut kompyuternykh issledovanii, M.–Izhevsk, 2004, 464 pp.

[12] L. V. Nedorezov, Chaos and Order in Population Dynamics: Modeling, Analysis, Forecast, LAP Lambert Academic Publishing, Saarbrucken, 2012

[13] M. Hebblewhite, Wolf and elk predator-prey dynamics in Banff National Park, Masters of Science Thesis, University of Montana, USA, 2000

[14] B. Elmhagen, P. Hellström, A. Angerbjörn, J. Kindberg, “Changes in Vole and Lemming Fluctuations in Northern Sweden 1960-2008 Revealed by Fox Dynamics”, Annales Zoologici Fennici, 48:3 (2011), 167–179 | DOI | DOI

[15] J. L. Keim, P. D. DeWitt, S. R. Lele, “Predators choose prey over prey habitats: evidence from a lynx-hare system”, Ecological Applications, 21:4 (2011), 1011–1016 | DOI | DOI

[16] L. Luiselli, R. Migliazza, P. Rotondo, G. Amori, “Macro-ecological patterns of a prey-predator system: rodents and snakes in West and Central Africa”, Tropical Zoology, 27:1 (2014), 1–8 | DOI | DOI

[17] A. I. Abakumov, Yu. G. Izrailskii, E. Ya. Frisman, “Slozhnaya dinamika planktona v topograficheskom vikhre”, Matematicheskaya biologiya i bioinformatika, 10:1 (2015), 416–426 | DOI | DOI

[18] H. N. Agiza, E. M. Elabbasy, H. El-Metwally, A. A. Elsadany, “Chaotic dynamics of a discrete prey-predator model with Holling type II”, Nonlinear Analysis: Real World Applications, 10:1 (2009), 116–129 | DOI | MR | Zbl | DOI | MR | Zbl

[19] Z. Hu, Z. Teng, L. Zhang, “Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response”, Nonlinear Analysis: Real World Applications, 12:4 (2011), 2356–2377 | DOI | MR | Zbl | DOI | MR | Zbl

[20] D. P. Mistro, L. A.D. Rodrigues, S. Petrovskii, “Spatiotemporal complexity of biological invasion in a space- and time-discrete predator-prey system with the strong Allee effect”, Ecological Complexity, 9 (2012), 16–32 | DOI | MR | DOI | MR

[21] Z. He, B. Li, “Complex dynamic behavior of a discrete-time predator-prey system of Holling-III type”, Advances in Difference Equations, 2014, 180 | DOI | MR | DOI | MR

[22] I. A. Bashkirtseva, P. V. Boyarshinova, T. V. Ryazanova, L. B. Ryashko, “Analiz indutsirovannogo shumom razrusheniya rezhimov sosuschestvovaniya v populyatsionnoi sisteme «khischnik-zhertva»”, Kompyuternye issledovaniya i modelirovanie, 8:4 (2016), 647–660

[23] A. Q. Khan, “Neimark-Sacker bifurcation of a two-dimensional discrete-time predatorprey model”, SpringerPlus, 5:1 (2016) | DOI | MR | DOI | MR

[24] T. Huang, H. Zhang, “Bifurcation, chaos and pattern formation in a space-and timediscrete predator-prey system”, Chaos, Solitons Fractals, 91 (2016), 92–107 | DOI | MR | Zbl | DOI | MR | Zbl

[25] T. Huang, H. Zhang, H. Yang, N. Wang, F. Zhang, “Complex patterns in a space-and time-discrete predator-prey model with Beddington-DeAngelis functional response”, Communications in Nonlinear Science and Numerical Simulation, 43 (2017), 182–199 | DOI | MR | Zbl | DOI | MR | Zbl

[26] R. Kon, “Multiple attractors in host-parasitoid interactions: Coexistence and extinction”, Mathematical Biosciences, 201:1–2 (2006), 172–183 | DOI | MR | Zbl | DOI | MR | Zbl

[27] Y. Kang, D. Armbruster, Y. Kuang, “Dynamics of a plant-herbivore model”, Journal of Biological Dynamics, 2:2 (2008), 89–101 | DOI | MR | Zbl | DOI | MR | Zbl

[28] Y. Kang, D. Armbruster, “Noise and seasonal effects on the dynamics of plant-herbivore models with monotonic plant growth functions”, International Journal of Biomathematics, 4:3 (2011), 255–274 | DOI | MR | Zbl | DOI | MR | Zbl

[29] F. M. Hilker, H. Malchow, M. Langlais, S. V. Petrovskii, “Oscillations and waves in a virally infected plankton system: Part II: Transition from lysogeny to lysis”, Ecological Complexity, 3:3 (2006), 200–208 | DOI | DOI

[30] M. Sambath, K. Balachandran, M. Suvinthra, “Stability and Hopf bifurcation of a diffusive predator-prey model with hyperbolic mortality”, Complexity, 21:S1 (2016), 34–43 | DOI | MR | DOI | MR

[31] W. L. Hogarth, P. Diamond, “Interspecific competition in larvae between entomophagous parasitoids”, American Naturalist, 124 (1984), 552–560 | DOI | DOI

[32] N. Kakehash, Y. Suzuki, Y. Iwasa, “Niche overlap of parasitoids in host-parasitoid systems: its consequence to single versus multiple introduction controversy in biological control”, Journal of Applied Ecology, 21 (1984), 115–131 | DOI | DOI

[33] X. Liao, Z. Ouyang, S. Zhou, “Permanence and stability of equilibrium for a two-prey one-predator discrete model”, Applied Mathematics and Computation, 186 (2007), 93–100 | DOI | MR | Zbl | DOI | MR | Zbl

[34] R. He, Z. Xiong, D. Hong, H. Yin, “Analysis of a stochastic ratio-dependent one-predator and two-mutualistic-preys model with Markovian switching and Holling type III functional response”, Advances in Difference Equations, 1 (2016), 285 | DOI | MR | Zbl | DOI | MR | Zbl

[35] M. Liu, P. Bai, “Dynamics of a stochastic one-prey two-predator model with Lévy jumps”, Applied Mathematics and Computation, 284 (2016), 308–321 | DOI | MR | Zbl | DOI | MR | Zbl

[36] M. Liu, M. Fan, “Stability in distribution of a three-species stochastic cascade predatorprey system with time delays”, IMA Journal of Applied Mathematics, 82:2 (2017), 396–423 | MR | Zbl | MR | Zbl

[37] W. Mbava, J. Y.T. Mugisha, Gonsalves J. W. Prey, “predator and super-predator model with disease in the super-predator”, Applied Mathematics and Computation, 297 (2017), 92–114 | DOI | MR | Zbl | DOI | MR | Zbl

[38] P. D.N. Srinivasu, S. Ismail, C. R. Naidu, “Global dynamics and controllability of a harvested prey-predator system”, Journal of Biological Systems, 9:1 (2001), 67–79 | DOI | MR | DOI | MR

[39] P. Walters, V. Christensen, B. Fulton, A. D. Smith, R. Hilborn, “Predictions from simple predator-prey theory about impacts of harvesting forage fishes”, Ecological Modelling, 337 (2016), 272–280 | DOI | DOI

[40] M. Liu, X. He, J. Yu, “Dynamics of a stochastic regime-switching predator-prey model with harvesting and distributed delays”, Nonlinear Analysis: Hybrid Systems, 28 (2018), 87–104 | DOI | MR | Zbl | DOI | MR | Zbl

[41] Y. Saito, Y. Takeuchi, “A time-delay model for prey-predator growth with stage structure”, Canadian Applied Mathematics Quarterly, 11:3 (2003), 293–302 | MR | Zbl | MR | Zbl

[42] S. A. Gourley, Y. Kuang, “A stage structured predator-prey model and its dependence on maturation delay and death rate”, Journal of Mathematical Biology, 49:2 (2004), 188–200 | DOI | MR | Zbl | DOI | MR | Zbl

[43] P. A. Abrams, C. Quince, “The impact of mortality on predator population size and stability in systems with stage-structured prey”, Theoretical Population Biology, 68:4 (2005), 253–266 | DOI | Zbl | DOI | Zbl

[44] X. K. Sun, H. F. Huo, H. Xiang, “Bifurcation and stability analysis in predator-prey model with a stage-structure for predator”, Nonlinear Dynamics, 58:3 (2009), 497–513 | DOI | MR | Zbl | DOI | MR | Zbl

[45] R. Xu, “Global dynamics of a predator-prey model with time delay and stage structure for the prey”, Nonlinear Analysis: Real World Applications, 12:4 (2011), 2151–2162 | DOI | MR | Zbl | DOI | MR | Zbl

[46] K. Chakraborty, M. Chakraborty, T. K. Kar, “Bifurcation and control of a bioeconomic model of a prey-predator system with a time delay”, Nonlinear Analysis: Hybrid Systems, 5:4 (2011), 613–625 | DOI | MR | Zbl | DOI | MR | Zbl

[47] K. Chakraborty, M. Chakraborty, T. K. Kar, “Optimal control of harvest and bifurcation of a prey-predator model with stage structure”, Applied Mathematics and Computation, 217:21 (2011), 8778–8792 | DOI | MR | Zbl | DOI | MR | Zbl

[48] K. Chakraborty, S. Jana, T. K. Kar, “Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting”, Applied Mathematics and Computation, 218:18 (2012), 9271–9290 | DOI | MR | Zbl | DOI | MR | Zbl

[49] J. Bhattacharyya, S. Pal, “The role of space in stage-structured cannibalism with harvesting of an adult predator”, Computers Mathematics with Applications, 66:3 (2013), 339–355 | DOI | MR | Zbl | DOI | MR | Zbl

[50] J. Bhattacharyya, S. Pal, “Stage-Structured Cannibalism in a Ratio-Dependent System with Constant Prey Refuge and Harvesting of Matured Predator”, Differential Equations and Dynamical Systems, 24:3 (2016), 345–366 | DOI | MR | Zbl | DOI | MR | Zbl

[51] X. Ma, Y. Shao, Z. Wang, M. Luo, X. Fang, Z. Ju, “An impulsive two-stage predator-prey model with stage-structure and square root functional responses”, Mathematics and Computers in Simulation, 119 (2016), 91–107 | DOI | MR | Zbl | DOI | MR | Zbl

[52] S. Khajanchi, “Modeling the dynamics of stage-structure predator-prey system with Monod-Haldane type response function”, Applied Mathematics and Computation, 302 (2017), 122–143 | DOI | MR | Zbl | DOI | MR | Zbl

[53] S. Khajanchi, S. Banerjee, “Role of constant prey refuge on stage structure predator-prey model with ratio dependent functional response”, Applied Mathematics and Computation, 314 (2017), 193–198 | DOI | MR | Zbl | DOI | MR | Zbl

[54] A. Wikan, “From chaos to chaos. An analysis of a discrete age-structured prey-predator model”, Journal of Mathematical Biology, 43:6 (2001), 471–500 | DOI | MR | Zbl | DOI | MR | Zbl

[55] S. Tang, L. Chen, “A discrete predator-prey system with age-structure for predator and natural barriers for prey”, Mathematical Modelling and Numerical Analysis, 35:4 (2001), 675–690 | DOI | MR | Zbl | DOI | MR | Zbl

[56] A. Wikan, “An Analysis of Discrete Stage-Structured Prey and Prey-Predator Population Models”, Discrete Dynamics in Nature and Society, 2017 (2017), 9475854 | DOI | MR | Zbl | DOI | MR | Zbl

[57] M. Agarwal, S. Devi, “Persistence in a ratio-dependent predator-prey-resource model with stage structure for prey”, International Journal of Biomathematics, 3:3 (2010), 313–336 | DOI | MR | Zbl | DOI | MR | Zbl

[58] M. Agarwal, S. Devi, “A stage-structured predator-prey model with density-dependent maturation delay”, International Journal of Biomathematics, 4:3 (2011), 289–312 | DOI | MR | Zbl | DOI | MR | Zbl

[59] A. Angerbjorn, M. Tannerfeldt, S. Erlinge, “Predator-prey relationships: arctic foxes and lemmings”, Journal of Animal Ecology, 68:1 (1999), 34–49 | DOI | DOI

[60] E. Ya. Frisman, G. P. Neverova, M. P. Kulakov, O. A. Zhigalskii, “Smena dinamicheskikh rezhimov v populyatsiyakh vidov s korotkim zhiznennym tsiklom: rezultaty analiticheskogo i chislennogo issledovaniya”, Matematicheskaya biologiya i bioinformatika, 9:2 (2014), 414–429 | DOI | DOI

[61] O. L. Zhdanova, E. Ya. Frisman, “Matematicheskoe modelirovanie mekhanizma differentsiatsii reproduktivnykh strategii v estestvennykh populyatsiyakh (na primere pestsov, Alopex lagopus)”, Kompyuternye issledovaniya i modelirovanie, 8:2 (2016), 213–228 | MR | MR

[62] K. V. Shlyufman, B. E. Fishman, E. Ya. Frisman, “Intervalno periodicheskaya dinamika rekurrentnykh uravnenii”, Informatika i sistemy upravleniya, 2013, no. 3, 66–73

[63] A. Kaikusalo, A. Angerbjörn, “The arctic fox population in Finnish Lapland during 30 years, 1964-93”, Annales Zoologici Fennici, 32 (1995), 69–77

[64] A. Angerbjörn, M. Tannerfeldt, H. Lundberg, “Geographical and temporal patterns of lemming population dynamics in Fennoscandia”, Ecography, 24:3 (2001), 298–308 | DOI | DOI

[65] A. P. Kuznetsov, Yu. V. Sedova, “Bifurkatsii trekhmernykh i chetyrekhmernykh otobrazhenii: Universalnye svoistva”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 20:5 (2012), 26–43 | Zbl | Zbl

[66] D. Van, Ch. Li, Sh. N. Chou, Normalnye formy i bifurkatsii vektornykh polei na ploskosti, Perevod s angliiskogo, ed. Yu. S. Ilyashenko, MTsNMO, M., 2005, 416 pp.

[67] P. Hersteinsson, D. W. Macdonald, “Diet of Arctic foxes (Alopex lagopus) in Iceland”, J. Zool., 240 (1996), 457–474 | DOI | DOI