Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_1_a9, author = {G. P. Neverova and O. L. Zhdanova and E. Ya. Frisman}, title = {Modeling the dynamics of predator-prey community with age structures}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {77--93}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a9/} }
TY - JOUR AU - G. P. Neverova AU - O. L. Zhdanova AU - E. Ya. Frisman TI - Modeling the dynamics of predator-prey community with age structures JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 77 EP - 93 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a9/ LA - ru ID - MBB_2019_14_1_a9 ER -
%0 Journal Article %A G. P. Neverova %A O. L. Zhdanova %A E. Ya. Frisman %T Modeling the dynamics of predator-prey community with age structures %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 77-93 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a9/ %G ru %F MBB_2019_14_1_a9
G. P. Neverova; O. L. Zhdanova; E. Ya. Frisman. Modeling the dynamics of predator-prey community with age structures. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 77-93. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a9/
[1] V. Volterra, Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 2004, 288 pp.
[2] A. J. Nicholson, “Supplement: the Balance of Animal Populations”, Journal of Animal Ecology, 2:1 (1933), 131–178 | DOI | DOI
[3] A. J. Nicholson, V. A. Bailey, “The Balance of Animal Populations”, Proceedings of the Zoological Society of London, 105:3 (1935), 551–598 | DOI | DOI
[4] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. MGU, ser. «Matematika i mekhanika», 6:1 (1937), 1–26
[5] A. Rosenzweig, R. H. MacArthur, “Graphical representation and stability conditions of predator-prey interaction”, Amer. Natur., 97 (1963), 209–223 | DOI | DOI
[6] A. N. Kolmogorov, “Kachestvennoe izuchenie matematicheskikh modelei dinamiki populyatsii”, Problemy kibernetiki, 1972, no. 5, 100–106
[7] A. D. Bazykin, Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 181 pp. | MR | MR
[8] M. P. Hassell, “Host-parasitoid population dynamics”, Journal of Animal Ecology, 69 (2000), 543–566 | DOI | DOI
[9] A. I. Abakumov, “Modelirovanie soobschestv s uchetom neopredelennosti dannykh”, Sibirskii ekologicheskii zhurnal, 2001, no. 5, 559–563
[10] A. I. Abakumov, M. G. Kazakova, “Prostranstvennaya model soobschestva vidov”, Dalnevostochnyi matematicheskii zhurnal, 3:1 (2002), 102–107 | MR | MR
[11] G. Yu. Riznichenko, A. B. Rubin, Biofizicheskaya dinamika produktsionnykh protsessov, Regulyarnaya i khaoticheskaya dinamika, Izhevskii institut kompyuternykh issledovanii, M.–Izhevsk, 2004, 464 pp.
[12] L. V. Nedorezov, Chaos and Order in Population Dynamics: Modeling, Analysis, Forecast, LAP Lambert Academic Publishing, Saarbrucken, 2012
[13] M. Hebblewhite, Wolf and elk predator-prey dynamics in Banff National Park, Masters of Science Thesis, University of Montana, USA, 2000
[14] B. Elmhagen, P. Hellström, A. Angerbjörn, J. Kindberg, “Changes in Vole and Lemming Fluctuations in Northern Sweden 1960-2008 Revealed by Fox Dynamics”, Annales Zoologici Fennici, 48:3 (2011), 167–179 | DOI | DOI
[15] J. L. Keim, P. D. DeWitt, S. R. Lele, “Predators choose prey over prey habitats: evidence from a lynx-hare system”, Ecological Applications, 21:4 (2011), 1011–1016 | DOI | DOI
[16] L. Luiselli, R. Migliazza, P. Rotondo, G. Amori, “Macro-ecological patterns of a prey-predator system: rodents and snakes in West and Central Africa”, Tropical Zoology, 27:1 (2014), 1–8 | DOI | DOI
[17] A. I. Abakumov, Yu. G. Izrailskii, E. Ya. Frisman, “Slozhnaya dinamika planktona v topograficheskom vikhre”, Matematicheskaya biologiya i bioinformatika, 10:1 (2015), 416–426 | DOI | DOI
[18] H. N. Agiza, E. M. Elabbasy, H. El-Metwally, A. A. Elsadany, “Chaotic dynamics of a discrete prey-predator model with Holling type II”, Nonlinear Analysis: Real World Applications, 10:1 (2009), 116–129 | DOI | MR | Zbl | DOI | MR | Zbl
[19] Z. Hu, Z. Teng, L. Zhang, “Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response”, Nonlinear Analysis: Real World Applications, 12:4 (2011), 2356–2377 | DOI | MR | Zbl | DOI | MR | Zbl
[20] D. P. Mistro, L. A.D. Rodrigues, S. Petrovskii, “Spatiotemporal complexity of biological invasion in a space- and time-discrete predator-prey system with the strong Allee effect”, Ecological Complexity, 9 (2012), 16–32 | DOI | MR | DOI | MR
[21] Z. He, B. Li, “Complex dynamic behavior of a discrete-time predator-prey system of Holling-III type”, Advances in Difference Equations, 2014, 180 | DOI | MR | DOI | MR
[22] I. A. Bashkirtseva, P. V. Boyarshinova, T. V. Ryazanova, L. B. Ryashko, “Analiz indutsirovannogo shumom razrusheniya rezhimov sosuschestvovaniya v populyatsionnoi sisteme «khischnik-zhertva»”, Kompyuternye issledovaniya i modelirovanie, 8:4 (2016), 647–660
[23] A. Q. Khan, “Neimark-Sacker bifurcation of a two-dimensional discrete-time predatorprey model”, SpringerPlus, 5:1 (2016) | DOI | MR | DOI | MR
[24] T. Huang, H. Zhang, “Bifurcation, chaos and pattern formation in a space-and timediscrete predator-prey system”, Chaos, Solitons Fractals, 91 (2016), 92–107 | DOI | MR | Zbl | DOI | MR | Zbl
[25] T. Huang, H. Zhang, H. Yang, N. Wang, F. Zhang, “Complex patterns in a space-and time-discrete predator-prey model with Beddington-DeAngelis functional response”, Communications in Nonlinear Science and Numerical Simulation, 43 (2017), 182–199 | DOI | MR | Zbl | DOI | MR | Zbl
[26] R. Kon, “Multiple attractors in host-parasitoid interactions: Coexistence and extinction”, Mathematical Biosciences, 201:1–2 (2006), 172–183 | DOI | MR | Zbl | DOI | MR | Zbl
[27] Y. Kang, D. Armbruster, Y. Kuang, “Dynamics of a plant-herbivore model”, Journal of Biological Dynamics, 2:2 (2008), 89–101 | DOI | MR | Zbl | DOI | MR | Zbl
[28] Y. Kang, D. Armbruster, “Noise and seasonal effects on the dynamics of plant-herbivore models with monotonic plant growth functions”, International Journal of Biomathematics, 4:3 (2011), 255–274 | DOI | MR | Zbl | DOI | MR | Zbl
[29] F. M. Hilker, H. Malchow, M. Langlais, S. V. Petrovskii, “Oscillations and waves in a virally infected plankton system: Part II: Transition from lysogeny to lysis”, Ecological Complexity, 3:3 (2006), 200–208 | DOI | DOI
[30] M. Sambath, K. Balachandran, M. Suvinthra, “Stability and Hopf bifurcation of a diffusive predator-prey model with hyperbolic mortality”, Complexity, 21:S1 (2016), 34–43 | DOI | MR | DOI | MR
[31] W. L. Hogarth, P. Diamond, “Interspecific competition in larvae between entomophagous parasitoids”, American Naturalist, 124 (1984), 552–560 | DOI | DOI
[32] N. Kakehash, Y. Suzuki, Y. Iwasa, “Niche overlap of parasitoids in host-parasitoid systems: its consequence to single versus multiple introduction controversy in biological control”, Journal of Applied Ecology, 21 (1984), 115–131 | DOI | DOI
[33] X. Liao, Z. Ouyang, S. Zhou, “Permanence and stability of equilibrium for a two-prey one-predator discrete model”, Applied Mathematics and Computation, 186 (2007), 93–100 | DOI | MR | Zbl | DOI | MR | Zbl
[34] R. He, Z. Xiong, D. Hong, H. Yin, “Analysis of a stochastic ratio-dependent one-predator and two-mutualistic-preys model with Markovian switching and Holling type III functional response”, Advances in Difference Equations, 1 (2016), 285 | DOI | MR | Zbl | DOI | MR | Zbl
[35] M. Liu, P. Bai, “Dynamics of a stochastic one-prey two-predator model with Lévy jumps”, Applied Mathematics and Computation, 284 (2016), 308–321 | DOI | MR | Zbl | DOI | MR | Zbl
[36] M. Liu, M. Fan, “Stability in distribution of a three-species stochastic cascade predatorprey system with time delays”, IMA Journal of Applied Mathematics, 82:2 (2017), 396–423 | MR | Zbl | MR | Zbl
[37] W. Mbava, J. Y.T. Mugisha, Gonsalves J. W. Prey, “predator and super-predator model with disease in the super-predator”, Applied Mathematics and Computation, 297 (2017), 92–114 | DOI | MR | Zbl | DOI | MR | Zbl
[38] P. D.N. Srinivasu, S. Ismail, C. R. Naidu, “Global dynamics and controllability of a harvested prey-predator system”, Journal of Biological Systems, 9:1 (2001), 67–79 | DOI | MR | DOI | MR
[39] P. Walters, V. Christensen, B. Fulton, A. D. Smith, R. Hilborn, “Predictions from simple predator-prey theory about impacts of harvesting forage fishes”, Ecological Modelling, 337 (2016), 272–280 | DOI | DOI
[40] M. Liu, X. He, J. Yu, “Dynamics of a stochastic regime-switching predator-prey model with harvesting and distributed delays”, Nonlinear Analysis: Hybrid Systems, 28 (2018), 87–104 | DOI | MR | Zbl | DOI | MR | Zbl
[41] Y. Saito, Y. Takeuchi, “A time-delay model for prey-predator growth with stage structure”, Canadian Applied Mathematics Quarterly, 11:3 (2003), 293–302 | MR | Zbl | MR | Zbl
[42] S. A. Gourley, Y. Kuang, “A stage structured predator-prey model and its dependence on maturation delay and death rate”, Journal of Mathematical Biology, 49:2 (2004), 188–200 | DOI | MR | Zbl | DOI | MR | Zbl
[43] P. A. Abrams, C. Quince, “The impact of mortality on predator population size and stability in systems with stage-structured prey”, Theoretical Population Biology, 68:4 (2005), 253–266 | DOI | Zbl | DOI | Zbl
[44] X. K. Sun, H. F. Huo, H. Xiang, “Bifurcation and stability analysis in predator-prey model with a stage-structure for predator”, Nonlinear Dynamics, 58:3 (2009), 497–513 | DOI | MR | Zbl | DOI | MR | Zbl
[45] R. Xu, “Global dynamics of a predator-prey model with time delay and stage structure for the prey”, Nonlinear Analysis: Real World Applications, 12:4 (2011), 2151–2162 | DOI | MR | Zbl | DOI | MR | Zbl
[46] K. Chakraborty, M. Chakraborty, T. K. Kar, “Bifurcation and control of a bioeconomic model of a prey-predator system with a time delay”, Nonlinear Analysis: Hybrid Systems, 5:4 (2011), 613–625 | DOI | MR | Zbl | DOI | MR | Zbl
[47] K. Chakraborty, M. Chakraborty, T. K. Kar, “Optimal control of harvest and bifurcation of a prey-predator model with stage structure”, Applied Mathematics and Computation, 217:21 (2011), 8778–8792 | DOI | MR | Zbl | DOI | MR | Zbl
[48] K. Chakraborty, S. Jana, T. K. Kar, “Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting”, Applied Mathematics and Computation, 218:18 (2012), 9271–9290 | DOI | MR | Zbl | DOI | MR | Zbl
[49] J. Bhattacharyya, S. Pal, “The role of space in stage-structured cannibalism with harvesting of an adult predator”, Computers Mathematics with Applications, 66:3 (2013), 339–355 | DOI | MR | Zbl | DOI | MR | Zbl
[50] J. Bhattacharyya, S. Pal, “Stage-Structured Cannibalism in a Ratio-Dependent System with Constant Prey Refuge and Harvesting of Matured Predator”, Differential Equations and Dynamical Systems, 24:3 (2016), 345–366 | DOI | MR | Zbl | DOI | MR | Zbl
[51] X. Ma, Y. Shao, Z. Wang, M. Luo, X. Fang, Z. Ju, “An impulsive two-stage predator-prey model with stage-structure and square root functional responses”, Mathematics and Computers in Simulation, 119 (2016), 91–107 | DOI | MR | Zbl | DOI | MR | Zbl
[52] S. Khajanchi, “Modeling the dynamics of stage-structure predator-prey system with Monod-Haldane type response function”, Applied Mathematics and Computation, 302 (2017), 122–143 | DOI | MR | Zbl | DOI | MR | Zbl
[53] S. Khajanchi, S. Banerjee, “Role of constant prey refuge on stage structure predator-prey model with ratio dependent functional response”, Applied Mathematics and Computation, 314 (2017), 193–198 | DOI | MR | Zbl | DOI | MR | Zbl
[54] A. Wikan, “From chaos to chaos. An analysis of a discrete age-structured prey-predator model”, Journal of Mathematical Biology, 43:6 (2001), 471–500 | DOI | MR | Zbl | DOI | MR | Zbl
[55] S. Tang, L. Chen, “A discrete predator-prey system with age-structure for predator and natural barriers for prey”, Mathematical Modelling and Numerical Analysis, 35:4 (2001), 675–690 | DOI | MR | Zbl | DOI | MR | Zbl
[56] A. Wikan, “An Analysis of Discrete Stage-Structured Prey and Prey-Predator Population Models”, Discrete Dynamics in Nature and Society, 2017 (2017), 9475854 | DOI | MR | Zbl | DOI | MR | Zbl
[57] M. Agarwal, S. Devi, “Persistence in a ratio-dependent predator-prey-resource model with stage structure for prey”, International Journal of Biomathematics, 3:3 (2010), 313–336 | DOI | MR | Zbl | DOI | MR | Zbl
[58] M. Agarwal, S. Devi, “A stage-structured predator-prey model with density-dependent maturation delay”, International Journal of Biomathematics, 4:3 (2011), 289–312 | DOI | MR | Zbl | DOI | MR | Zbl
[59] A. Angerbjorn, M. Tannerfeldt, S. Erlinge, “Predator-prey relationships: arctic foxes and lemmings”, Journal of Animal Ecology, 68:1 (1999), 34–49 | DOI | DOI
[60] E. Ya. Frisman, G. P. Neverova, M. P. Kulakov, O. A. Zhigalskii, “Smena dinamicheskikh rezhimov v populyatsiyakh vidov s korotkim zhiznennym tsiklom: rezultaty analiticheskogo i chislennogo issledovaniya”, Matematicheskaya biologiya i bioinformatika, 9:2 (2014), 414–429 | DOI | DOI
[61] O. L. Zhdanova, E. Ya. Frisman, “Matematicheskoe modelirovanie mekhanizma differentsiatsii reproduktivnykh strategii v estestvennykh populyatsiyakh (na primere pestsov, Alopex lagopus)”, Kompyuternye issledovaniya i modelirovanie, 8:2 (2016), 213–228 | MR | MR
[62] K. V. Shlyufman, B. E. Fishman, E. Ya. Frisman, “Intervalno periodicheskaya dinamika rekurrentnykh uravnenii”, Informatika i sistemy upravleniya, 2013, no. 3, 66–73
[63] A. Kaikusalo, A. Angerbjörn, “The arctic fox population in Finnish Lapland during 30 years, 1964-93”, Annales Zoologici Fennici, 32 (1995), 69–77
[64] A. Angerbjörn, M. Tannerfeldt, H. Lundberg, “Geographical and temporal patterns of lemming population dynamics in Fennoscandia”, Ecography, 24:3 (2001), 298–308 | DOI | DOI
[65] A. P. Kuznetsov, Yu. V. Sedova, “Bifurkatsii trekhmernykh i chetyrekhmernykh otobrazhenii: Universalnye svoistva”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 20:5 (2012), 26–43 | Zbl | Zbl
[66] D. Van, Ch. Li, Sh. N. Chou, Normalnye formy i bifurkatsii vektornykh polei na ploskosti, Perevod s angliiskogo, ed. Yu. S. Ilyashenko, MTsNMO, M., 2005, 416 pp.
[67] P. Hersteinsson, D. W. Macdonald, “Diet of Arctic foxes (Alopex lagopus) in Iceland”, J. Zool., 240 (1996), 457–474 | DOI | DOI