Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_1_a7, author = {N. A. Babushkina and E. A. Kuzina and A. A. Loos and E. V. Belyaeva}, title = {Assessment of the efficient strategies for applying antitumor viral vaccine therapy based on mathematical modeling}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {34--53}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a7/} }
TY - JOUR AU - N. A. Babushkina AU - E. A. Kuzina AU - A. A. Loos AU - E. V. Belyaeva TI - Assessment of the efficient strategies for applying antitumor viral vaccine therapy based on mathematical modeling JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 34 EP - 53 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a7/ LA - ru ID - MBB_2019_14_1_a7 ER -
%0 Journal Article %A N. A. Babushkina %A E. A. Kuzina %A A. A. Loos %A E. V. Belyaeva %T Assessment of the efficient strategies for applying antitumor viral vaccine therapy based on mathematical modeling %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 34-53 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a7/ %G ru %F MBB_2019_14_1_a7
N. A. Babushkina; E. A. Kuzina; A. A. Loos; E. V. Belyaeva. Assessment of the efficient strategies for applying antitumor viral vaccine therapy based on mathematical modeling. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 34-53. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a7/
[1] A. Ya. Mutsenietse, Onkotropizm virusov i problema viroterapii zlokachestvennykh opukholei, Riga, 1972, 435 pp.
[2] A. Yu. Gromova, Protivoopukholevye svoistva vaktsinnogo shtamma virusa venesuelskogo entsefalomielita i ego onkolizata, dis. ... kand. biol. nauk, Sankt-Peterburg, 1999, 114 pp. | Zbl | Zbl
[3] L. N. Urazova, Effektivnost i mekhanizmy protivoopukholevogo deistviya virusnykh vaktsin pri eksperimentalnom onkogeneze, dis. ... d-ra. biol. nauk, Sankt-Peterburg, 2003, 196 pp.
[4] I. G. Vidyaeva, Virusnye vaktsiny i ikh onkolizaty v terapii eksperimentalnykh opukholei, dis. ... kand. med. nauk, Tomsk, 2005, 134 pp.
[5] V. B. Loktev, T. Yu. Ivankina, S. V. Netesov, P. M. Chumakov, “Onkoliticheskie parvovirusy. Novye podkhody k lecheniyu rakovykh zabolevanii”, Vestnik Rossiiskoi akademii meditsinskikh nauk, 2 (2012), 42–47
[6] Yu. N. Lezhnin, Yu. E. Kravchenko, E. I. Frolova, P. M. Chumakov, S. P. Chumakov, “Onkotoksicheskie belki v protivorakovoi terapii: Mekhanizmy deistviya”, Molekulyarnaya biologiya, 49:2 (2015), 264–278
[7] G. Hristov, M. Krämer, J. Li, N. El-Andaloussi, R. Mora, L. Daeffler, H. Zentgraf, J. Rommelaere, A. Marchini, “Through its non-structural protein NS1, parvovirus H-1 induces apoptosis via accumulation of reactive oxygen species”, Journal of Virology, 84:12 (2010), 5909–5922 | DOI | DOI
[8] J. Rommelaere, K. Geletneky, A. L. Angelova, L. Daeffler, C. Dinsart, I. Kiprianova, J. R. Schlehofer, Z. Raykov, “Oncolytic parvoviruses as cancer therapeutics”, Cytokine Growth Factor Reviews, 21:2 (2010), 185–195 | DOI | DOI
[9] S. F. Cotmore, P. Tattersall, “Parvoviral hostrangeand cell entry mechanisms”, Advances in Virus Research, 70 (2007), 183–232 | DOI | DOI
[10] S. P. Grekova, M. Aprahamian, L. Daeffler, B. Leuchs, A. Angelova, T. Giese, A. Galabov, A. Heller, N. A. Giese, J. Rommelaere, Z. Raykov, “Interferon improves the vaccination potential of oncolytic parvovirus H-1PV for the treatment of peritoneal carcinomatosis in pancreatic cancer”, Cancer Biology Therapy, 12:10 (2011), 888–895 | DOI | DOI
[11] Z. Raykov, S. Grekova, A. S. Galabov, G. Balboni, U. Koch, M. Aprahamian, J. Rommelaere, “Combined oncolytic and vaccination activities of parvovirus H-1 in a metastatic tumor model”, Oncology Reports, 17:6 (2007), 1493–1500
[12] A. L. Angelova, M. Aprahamian, G. Balboni, H. J. Delecluse, R. Feederle, I. Kiprianova, S. Grekova, A. Galabov, M. Witzens-Harig, A. D. Ho, J. Rommelaere, Z. Raykov, “Oncolytic rat parvovirus H-1PV, a candidate for the treatment of human lymphoma: In vitro and in vivo studies”, Molecular Therapy, 17:7 (2009), 1164–1172 | DOI | DOI
[13] L. De Pillis, A. Radunskaya, C. Wiseman, “A Validated Mathematical Model of Cell-Mediated Immune Response to Tumor Growth”, Cancer Res., 65 (2005), 7950–7958 | DOI | DOI
[14] L. De Pillis, A. Gallegos, A. Radunskaya, “A model of dendritie cell therapy for melanoma”, Front. Oncol., 3 (2013), 56–77
[15] E. Kose, S. Moore, C. Ofodile, A. Radunskaya, R. Ellen, “Immuno-kinetics of immunotherapy: dosing with DCs”, Letters in Biomathematics, 4:1 (2017), 39–58 | DOI | MR | DOI | MR
[16] R. Kim, T. Woods, A. Radunskaya, “Mathematical Modeling of Tumor Immune Interactions: A Closer Look at a PD-L1 Inhibitor in Cancer Immunotherapy”, SPORA: A Journal of Biomathematics, 4:1 (2018), 25–41
[17] N. A. Babushkina, “Otsenka upravlyayuschikh dozovykh vozdeistvii protivoopukholevoi vaktsinoterapii s pomoschyu matematicheskogo modelirovaniya”, Problemy upravleniya, 5 (2013), 60–65
[18] N. A. Glumov V. M. Babushkina, “Matematicheskoe modelirovanie mekhanizmov protivoopukholevogo deistviya virusnykh vaktsin”, Trudy XI Mezhdunarodnoi. nauchnoi konferentsii «Fizika i radioelektronika v meditsine i ekologii», FREME-2014 (Rossiya, Suzdal), v. 1, VGU, Vladimir, 2014, 153–158
[19] N. A. Babushkina, V. M. Glumov, E. A. Kuzina, “Primenenie kompyuternykh tekhnologii pri eksperimentalnom izuchenii effektivnosti protivoopukholevykh virusnykh vaktsin”, Trudy XII Mezhdunarodnoi nauchnoi konferentsii «Fizika i radioelektronika v meditsine i ekologii», FREME-2016 (Rossiya, Suzdal), v. 1, VGU, Vladimir, 2016, 116–121
[20] N. A. Babushkina, V. M. Glumov, E. A. Kuzina, “Primenenie matematicheskogo modelirovaniya dlya otsenki effektivnosti metoda protivoopukholevoi terapii”, Problemy upravleniya, 3 (2017), 49–56
[21] N. Babushkina, E. Kuzina, “Analytical study of the antitumor viral vaccine introduction regimens based on mathematical modeling”, Advances in Systems Science and Applications, 18:1 (2018), 59–84
[22] G. I. Marchuk, Matematicheskie modeli v immunologii. Vychislitelnye metody i eksperimenty, Nauka, M., 1991, 304 pp.
[23] N. V. Pertsev, “Globalnaya razreshimost i otsenki reshenii zadachi Koshi dlya funktsionalno-differentsialnykh uravnenii s zapazdyvaniem, ispolzuemykh v modelyakh zhivykh sistem”, Sibirskii matematicheskii zhurnal, 59:1 (2018), 143–157 | MR | Zbl | MR | Zbl
[24] A. A. Romanyukha, Matematicheskie modeli v immunologii i epidemiologii infektsionnykh zabolevanii, BINOM. Laboratoriya znanii, M., 2011, 293 pp.
[25] H. F. Skipper, “Kinetics of mammary tumor cell-growth and implications for therapy”, Cancer, 28:6 (1971), 1479–1499 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | DOI
[26] S. V. Rusakov, M. V. Chirkov, “Matematicheskaya model vliyaniya immunoterapii na dinamiku immunnogo otveta”, Problemy upravleniya, 6 (2012), 45–50
[27] S. V. Rusakov, M. V. Chirkov, “Identifikatsiya parametrov i upravlenie v matematicheskikh modelyakh immunnogo otveta”, Rossiiskii zhurnal biomekhaniki, 18:2 (2014), 259–269