Modelling HIV infection: model identification and global sensitivity analysis
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 19-33

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical modelling can be very useful in studying complex objects in modern systems immunology. In this work we studied the problem of modelling immune cell population dynamics for HIV infection through the set of models with different levels of complexity, which include several characteristics of HIV infection dynamics (antigen presenting, cell and humoral immune reactions, the effect of regulatory T-lymphocytes). We formulated and solved the parameter estimation problem using maximal likelihood approach, for two variants of modelling error quantifying. The global sensitivity analysis was implemented with LHS-PRCC method. Models were compared by the residual functional values and using the information-theoretical framework. We present the extended Marchuk-Petrov model for HIV infection with delays. For solving the parameter estimation problem for this model we compared a number of numerical optimization methods.
@article{MBB_2019_14_1_a6,
     author = {V. V. Zheltkova and D. A. Zheltkov and G. A. Bocharov},
     title = {Modelling {HIV} infection: model identification and global sensitivity analysis},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {19--33},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a6/}
}
TY  - JOUR
AU  - V. V. Zheltkova
AU  - D. A. Zheltkov
AU  - G. A. Bocharov
TI  - Modelling HIV infection: model identification and global sensitivity analysis
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 19
EP  - 33
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a6/
LA  - ru
ID  - MBB_2019_14_1_a6
ER  - 
%0 Journal Article
%A V. V. Zheltkova
%A D. A. Zheltkov
%A G. A. Bocharov
%T Modelling HIV infection: model identification and global sensitivity analysis
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 19-33
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a6/
%G ru
%F MBB_2019_14_1_a6
V. V. Zheltkova; D. A. Zheltkov; G. A. Bocharov. Modelling HIV infection: model identification and global sensitivity analysis. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 19-33. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a6/

[1] A. S. Perelson, “Modelling viral and immune system dynamics”, Nature Reviews Immunology, 2:1 (2002), 28 | DOI | DOI

[2] B. M. Adams, H. T. Banks, M. Davidian, H. D. Kwon, H. T. Tran, S. N. Wynne, E. S. Rosenberg, “HIV dynamics: modeling, data analysis, and optimal treatment protocols”, Journal of Computational and Applied Mathematics, 184:1 (2005), 10–49 | DOI | MR | Zbl | DOI | MR | Zbl

[3] G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans, “Human immunodeficiency virus infection: from biological observations to mechanistic mathematical modelling”, Mathematical Modelling of Natural Phenomena, 7:5 (2012), 78–104 | DOI | MR | Zbl | DOI | MR | Zbl

[4] M. Simonov, R. A. Rawlings, N. Comment, S. E. Reed, X. Shi, P. W. Nelson, “Modeling adaptive regulatory T-cell dynamics during early HIV infection”, PloS one, 7:4 (2012), e33924 | DOI | MR | DOI | MR

[5] V. V. Zheltkova, D. A. Zheltkov, Z. Grossman, G. A. Bocharov, E. E. Tyrtyshnikov, “Tensor based approach to the numerical treatment of the parameter estimation problems in mathematical immunology”, Journal of Inverse and Ill-posed Problems, 26:1 (2018), 51–66 | DOI | MR | Zbl | DOI | MR | Zbl

[6] S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, “A methodology for performing global uncertainty and sensitivity analysis in systems biology”, Journal of Theoretical Biology, 254:1 (2008), 178–196 | DOI | MR | Zbl | DOI | MR | Zbl

[7] V. V. Zheltkova, G. A. Bocharov, “Matematicheskoe modelirovanie dinamiki VICh-infektsii s raznoi stepenyu detalizatsii”, Sovremennye problemy fiziko-matematicheskikh nauk, ed. Mozharova T. N., OGU im. I. S. Turgeneva, Orel, 2018, 347–350

[8] C. T. Baker, G. A. Bocharov, J. M. Ford, P. M. Lumb, S. J. Norton, C. A.H. Paul, T. Junt, P. Krebs, B. Ludewig, “Computational approaches to parameter estimation and model selection in immunology”, Journal of Computational and Applied Mathematics, 184:1 (2005), 50–76 | DOI | MR | Zbl | DOI | MR | Zbl

[9] M. D. Hazenberg, S. A. Otto, B. H. van Benthem, M. T. Roos, R. A. Coutinho, J. M. Lange, D. Hamann, M. Prins, F. Miedema, “Persistent immune activation in HIV-1 infection is associated with progression to AIDS”, Aids, 17:13 (2003), 1881–1888 | DOI | DOI

[10] M. Zeng, A. T. Haase, T. W. Schacker, “Lymphoid tissue structure and HIV-1 infection: life or death for T cells”, Trends in Immunology, 33:6 (2012), 306–314 | DOI | DOI

[11] C. L. Day, D. E. Kaufmann, P. Kiepiela, J. A. Brown, E. S. Moodley, S. Reddy, E. W. Mackey, J. D. Miller, A. J. Leslie, C. DePierres, Z. Mncube, “PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression”, Nature, 443:7109 (2006), 350 | DOI | DOI

[12] S. Wilson, D. Levy, “A mathematical model of the enhancement of tumor vaccine efficacy by immunotherapy”, Bulletin of Mathematical Biology, 74:7 (2012), 1485–1500 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Y. Kim, S. Lee, Y. S. Kim, S. Lawler, Y. S. Gho, Y. K. Kim, H. J. Hwang, “Regulation of Th1/Th2 cells in asthma development: a mathematical model”, Mathematical Biosciences Engineering, 10:4 (2013), 1095–1333 | DOI | MR | DOI | MR

[14] G. I. Marchuk, Mathematical Modelling of Immune Response in Infectious Diseases, Mathematics and Its Applications, 395, Springer Science+Business Media, Dordrecht, 1997 | DOI | MR | DOI | MR

[15] M. Ashyraliyev, Y. Fomekong-Nanfack, J. A. Kaandorp, J. G. Blom, “Systems biology: parameter estimation for biochemical models”, FEBS Journal, 276:4 (2009), 886–902 | DOI | DOI

[16] G. A. Bocharov, N. A. Medvedeva, “Chislennye algoritmy analiza chuvstvitelnosti i slozhnosti opisaniya v zadachakh identifikatsii modelei matematicheskoi immunologii”, Chislennye metody, parallelnye vychisleniya i informatsionnye tekhnologii, ed. Vl. V. Voevodin, E. E. yrtyshnikov, Izd-vo NIVTs MGU, 2008, 67–90

[17] M. L. Munier, A. D. Kelleher, “Acutely dysregulated, chronically disabled by the enemy within: T-cell responses to HIV-1 infection”, Immunology and cell biology, 85:1 (2007), 6–15 | DOI | DOI

[18] Dr. Denise Kirschner, LHS-PRCC, (data obrascheniya: 27.12.2018) http://malthus.micro.med.umich.edu/lab/usadata/

[19] S. Johnson, The NLopt nonlinear-optimization package, (data obrascheniya: 27.12.2018) http://ab-initio.mit.edu/wiki/index.php/NLopt

[20] D. A. Zheltkov, I. V. Oferkin, E. V. Katkova, A. V. Sulimov, V. B. Sulimov, E. E. Tyrtyshnikov, “TTDock: a docking method based on tensor train decompositions”, Vychislitelnye Metody i Programmirovanie, 4:3 (2013), 279–291

[21] S. Gudmundsson, Parallel Global Optimization, M. Sc. Thesis, Technical University of Danmarks, 1998 | Zbl | Zbl

[22] P. Kaelo, M. M. Ali, “Some variants of the controlled random search algorithm for global optimization”, Journal of Optimization Theory and Applications, 130:2 (2006), 253–264 | DOI | MR | Zbl | DOI | MR | Zbl

[23] A. R. Kan, G. T. Timmer, “Stochastic global optimization methods”, Mathematical programming, 39:1 (1987), 27–56 | DOI | MR | Zbl | DOI | MR | Zbl

[24] Thomas Harvey Rowan, Functional stability analysis of numerical algorithms, The doctoral dissertation, The University of Texas at Austin, 1990

[25] T. P. Runarsson, X. Yao, “Search biases in constrained evolutionary optimization”, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35:2 (2005), 233–243 | DOI | MR | DOI | MR

[26] C. H. Silva-Santos, M. S. Goncalves, H. E. Hernández-Figueroa, “Designing novel photonic devices by bio-inspired computing”, Photonics Technology Letters, 22:15 (2010) | DOI | DOI

[27] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, C. S. Woodward, “SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers”, ACM Transactions on Mathematical Software (TOMS), 31:3 (2005), 363–396 | DOI | MR | Zbl | DOI | MR | Zbl

[28] G. A. Bocharov, A. A. Romanyukha, Chislennoe reshenie differentsialnykh uravnenii s zapazdyvayuschim argumentom na osnove lineinykh mnogoshagovykh metodov. Algoritm i programma, preprint OVM AN SSSR, No 117, M., 1986