Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_1_a6, author = {V. V. Zheltkova and D. A. Zheltkov and G. A. Bocharov}, title = {Modelling {HIV} infection: model identification and global sensitivity analysis}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {19--33}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a6/} }
TY - JOUR AU - V. V. Zheltkova AU - D. A. Zheltkov AU - G. A. Bocharov TI - Modelling HIV infection: model identification and global sensitivity analysis JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 19 EP - 33 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a6/ LA - ru ID - MBB_2019_14_1_a6 ER -
%0 Journal Article %A V. V. Zheltkova %A D. A. Zheltkov %A G. A. Bocharov %T Modelling HIV infection: model identification and global sensitivity analysis %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 19-33 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a6/ %G ru %F MBB_2019_14_1_a6
V. V. Zheltkova; D. A. Zheltkov; G. A. Bocharov. Modelling HIV infection: model identification and global sensitivity analysis. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 19-33. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a6/
[1] A. S. Perelson, “Modelling viral and immune system dynamics”, Nature Reviews Immunology, 2:1 (2002), 28 | DOI | DOI
[2] B. M. Adams, H. T. Banks, M. Davidian, H. D. Kwon, H. T. Tran, S. N. Wynne, E. S. Rosenberg, “HIV dynamics: modeling, data analysis, and optimal treatment protocols”, Journal of Computational and Applied Mathematics, 184:1 (2005), 10–49 | DOI | MR | Zbl | DOI | MR | Zbl
[3] G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans, “Human immunodeficiency virus infection: from biological observations to mechanistic mathematical modelling”, Mathematical Modelling of Natural Phenomena, 7:5 (2012), 78–104 | DOI | MR | Zbl | DOI | MR | Zbl
[4] M. Simonov, R. A. Rawlings, N. Comment, S. E. Reed, X. Shi, P. W. Nelson, “Modeling adaptive regulatory T-cell dynamics during early HIV infection”, PloS one, 7:4 (2012), e33924 | DOI | MR | DOI | MR
[5] V. V. Zheltkova, D. A. Zheltkov, Z. Grossman, G. A. Bocharov, E. E. Tyrtyshnikov, “Tensor based approach to the numerical treatment of the parameter estimation problems in mathematical immunology”, Journal of Inverse and Ill-posed Problems, 26:1 (2018), 51–66 | DOI | MR | Zbl | DOI | MR | Zbl
[6] S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, “A methodology for performing global uncertainty and sensitivity analysis in systems biology”, Journal of Theoretical Biology, 254:1 (2008), 178–196 | DOI | MR | Zbl | DOI | MR | Zbl
[7] V. V. Zheltkova, G. A. Bocharov, “Matematicheskoe modelirovanie dinamiki VICh-infektsii s raznoi stepenyu detalizatsii”, Sovremennye problemy fiziko-matematicheskikh nauk, ed. Mozharova T. N., OGU im. I. S. Turgeneva, Orel, 2018, 347–350
[8] C. T. Baker, G. A. Bocharov, J. M. Ford, P. M. Lumb, S. J. Norton, C. A.H. Paul, T. Junt, P. Krebs, B. Ludewig, “Computational approaches to parameter estimation and model selection in immunology”, Journal of Computational and Applied Mathematics, 184:1 (2005), 50–76 | DOI | MR | Zbl | DOI | MR | Zbl
[9] M. D. Hazenberg, S. A. Otto, B. H. van Benthem, M. T. Roos, R. A. Coutinho, J. M. Lange, D. Hamann, M. Prins, F. Miedema, “Persistent immune activation in HIV-1 infection is associated with progression to AIDS”, Aids, 17:13 (2003), 1881–1888 | DOI | DOI
[10] M. Zeng, A. T. Haase, T. W. Schacker, “Lymphoid tissue structure and HIV-1 infection: life or death for T cells”, Trends in Immunology, 33:6 (2012), 306–314 | DOI | DOI
[11] C. L. Day, D. E. Kaufmann, P. Kiepiela, J. A. Brown, E. S. Moodley, S. Reddy, E. W. Mackey, J. D. Miller, A. J. Leslie, C. DePierres, Z. Mncube, “PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression”, Nature, 443:7109 (2006), 350 | DOI | DOI
[12] S. Wilson, D. Levy, “A mathematical model of the enhancement of tumor vaccine efficacy by immunotherapy”, Bulletin of Mathematical Biology, 74:7 (2012), 1485–1500 | DOI | MR | Zbl | DOI | MR | Zbl
[13] Y. Kim, S. Lee, Y. S. Kim, S. Lawler, Y. S. Gho, Y. K. Kim, H. J. Hwang, “Regulation of Th1/Th2 cells in asthma development: a mathematical model”, Mathematical Biosciences Engineering, 10:4 (2013), 1095–1333 | DOI | MR | DOI | MR
[14] G. I. Marchuk, Mathematical Modelling of Immune Response in Infectious Diseases, Mathematics and Its Applications, 395, Springer Science+Business Media, Dordrecht, 1997 | DOI | MR | DOI | MR
[15] M. Ashyraliyev, Y. Fomekong-Nanfack, J. A. Kaandorp, J. G. Blom, “Systems biology: parameter estimation for biochemical models”, FEBS Journal, 276:4 (2009), 886–902 | DOI | DOI
[16] G. A. Bocharov, N. A. Medvedeva, “Chislennye algoritmy analiza chuvstvitelnosti i slozhnosti opisaniya v zadachakh identifikatsii modelei matematicheskoi immunologii”, Chislennye metody, parallelnye vychisleniya i informatsionnye tekhnologii, ed. Vl. V. Voevodin, E. E. yrtyshnikov, Izd-vo NIVTs MGU, 2008, 67–90
[17] M. L. Munier, A. D. Kelleher, “Acutely dysregulated, chronically disabled by the enemy within: T-cell responses to HIV-1 infection”, Immunology and cell biology, 85:1 (2007), 6–15 | DOI | DOI
[18] Dr. Denise Kirschner, LHS-PRCC, (data obrascheniya: 27.12.2018) http://malthus.micro.med.umich.edu/lab/usadata/
[19] S. Johnson, The NLopt nonlinear-optimization package, (data obrascheniya: 27.12.2018) http://ab-initio.mit.edu/wiki/index.php/NLopt
[20] D. A. Zheltkov, I. V. Oferkin, E. V. Katkova, A. V. Sulimov, V. B. Sulimov, E. E. Tyrtyshnikov, “TTDock: a docking method based on tensor train decompositions”, Vychislitelnye Metody i Programmirovanie, 4:3 (2013), 279–291
[21] S. Gudmundsson, Parallel Global Optimization, M. Sc. Thesis, Technical University of Danmarks, 1998 | Zbl | Zbl
[22] P. Kaelo, M. M. Ali, “Some variants of the controlled random search algorithm for global optimization”, Journal of Optimization Theory and Applications, 130:2 (2006), 253–264 | DOI | MR | Zbl | DOI | MR | Zbl
[23] A. R. Kan, G. T. Timmer, “Stochastic global optimization methods”, Mathematical programming, 39:1 (1987), 27–56 | DOI | MR | Zbl | DOI | MR | Zbl
[24] Thomas Harvey Rowan, Functional stability analysis of numerical algorithms, The doctoral dissertation, The University of Texas at Austin, 1990
[25] T. P. Runarsson, X. Yao, “Search biases in constrained evolutionary optimization”, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35:2 (2005), 233–243 | DOI | MR | DOI | MR
[26] C. H. Silva-Santos, M. S. Goncalves, H. E. Hernández-Figueroa, “Designing novel photonic devices by bio-inspired computing”, Photonics Technology Letters, 22:15 (2010) | DOI | DOI
[27] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, C. S. Woodward, “SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers”, ACM Transactions on Mathematical Software (TOMS), 31:3 (2005), 363–396 | DOI | MR | Zbl | DOI | MR | Zbl
[28] G. A. Bocharov, A. A. Romanyukha, Chislennoe reshenie differentsialnykh uravnenii s zapazdyvayuschim argumentom na osnove lineinykh mnogoshagovykh metodov. Algoritm i programma, preprint OVM AN SSSR, No 117, M., 1986