Modeling the spatio-temporal dynamics of a population with age structure and long-range interactions: synchronization and clustering
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 1-18

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposed a mathematical model for spatio-temporal dynamics of two-age populations coupled by migration living on a two-dimensional areal. The model equation is a system of nonlocal coupled two-dimensional maps. We considered cases when populations are coupled in a certain neighborhood of different form: circle, square or rhombus. Special attention is paid to the situation when the intensity of the migrants flow between the territories decreases with increasing distance between them. For this model we study the conditions for the formation of groups of synchronous populations or clusters that form, in space, typical structures like spots or stripes mixed with solitary states. It is shown that the dynamics, in time, of different clusters may differ significantly and may not be coherent and correspond to several simultaneous multistable regimes or potential states of the local population. Such spatio-temporal regimes are forced and are caused by impacts or perturbations on a single or several populations when their number falls into the attraction basin of another regime. With strong coupling, such clusters are rare and are represented by single outbursts or solitary states. However, the decrease in the coupling strength leads to the fact that these outbursts cause oscillations of their neighbors, and in their neighborhood a cluster of solitary states is formed which is surrounded by subpopulations with a different type of dynamics. It was found that the interaction of different type of clusters leads to the formation of a large number of groups with transitional dynamics that were not described for local populations.
@article{MBB_2019_14_1_a5,
     author = {M. P. Kulakov and E. Ya. Frisman},
     title = {Modeling the spatio-temporal dynamics of a population with age structure and long-range interactions: synchronization and clustering},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {1--18},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a5/}
}
TY  - JOUR
AU  - M. P. Kulakov
AU  - E. Ya. Frisman
TI  - Modeling the spatio-temporal dynamics of a population with age structure and long-range interactions: synchronization and clustering
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 1
EP  - 18
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a5/
LA  - ru
ID  - MBB_2019_14_1_a5
ER  - 
%0 Journal Article
%A M. P. Kulakov
%A E. Ya. Frisman
%T Modeling the spatio-temporal dynamics of a population with age structure and long-range interactions: synchronization and clustering
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 1-18
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a5/
%G ru
%F MBB_2019_14_1_a5
M. P. Kulakov; E. Ya. Frisman. Modeling the spatio-temporal dynamics of a population with age structure and long-range interactions: synchronization and clustering. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a5/

[1] F. E. Udwadia, N. Raju, “Dynamics of Coupled Nonlinear Maps and Its Application to Ecological Modeling”, Applied Mathematics and Computation, 82 (1997), 137–179 | DOI | MR | Zbl | DOI | MR | Zbl

[2] D. B. Wysham, A. Hastings, “Sudden Shift Ecological Systems: Intermittency and Transients in the Coupled Riker Population Model”, Bulletin of Mathematical Biology, 70 (2008), 1013–1031 | DOI | MR | Zbl | DOI | MR | Zbl

[3] V. Manica, J. A.L. Silva, “The Influence of Temporal Migration in the Synchronization of Populations”, Trends in Applied and Computational Mathematics, 16:1 (2015), 31–40 | DOI | MR | DOI | MR

[4] D. Franco, A. Ruiz-Herrera, “To connect or not to connect isolated patches”, Journal of Theoretical Biology, 7 (2015), 72–80 | DOI | MR | DOI | MR

[5] M. L. Castro, J. A.L. Silva, D. A.R. Justo, “Stability in an age-structured metapopulation model”, J. Math. Biol., 52 (2006), 183–208 | DOI | MR | DOI | MR

[6] E. E. Goldwyn, A. Hastings, “The roles of the Moran effect and dispersal in synchronizing oscillating populations”, Journal of Theoretical Biology, 289:21 (2011), 237–246 | DOI | MR | Zbl | DOI | MR | Zbl

[7] H. N. Comins, M. P. Hassell, R. M. May, “The spatial dynamics of host-parasitoid systems”, J. Animal Ecology, 61 (1992), 735–748 | DOI | DOI

[8] T. Huang, H. Zhang, “Bifurcation, chaos and pattern formation in a space-and time-discrete predator-prey system”, Chaos, Solitons Fractals, 91 (2016), 92–107 | DOI | MR | Zbl | DOI | MR | Zbl

[9] S. P. Kuznetsov, “Universalnost i podobie svyazannykh sistem Feigenbauma”, Izv. Vuzov: Radiofizika, 27:8 (1985), 991–1007

[10] A. P. Kuznetsov, S. P. Kuznetsov, “Kriticheskaya dinamika reshetok svyazannykh otobrazhenii u poroga khaosa”, Izv. vuzov. Radiofizika, 34:10-12 (1991), 1079–1115

[11] M. P. Kulakov, T. I. Aksenovich, E. Ya. Frisman, “Podkhody k opisaniyu prostranstvennoi dinamiki migratsionno-svyazannykh populyatsii: analiz sinkhronizatsii tsiklov”, Regionalnye problemy, 16:1 (2013), 5–15

[12] J. A.L. Silva, J. A. Barrionuevo, F. T. Giordani, “Synchronism in population networks with non linear coupling”, Nonlinear Analysis: Real World Applications, 11:2 (2009), 1005–1016 | DOI | MR | DOI | MR

[13] D. B. Vasconcelos, R. L. Viana, S. R. Lopes, A. M. Batista, S. E. de S. Pinto, “Spatial correlations and synchronization in coupled map lattices with long-range interactions”, Physica A, 343 (2004), 201–218 | DOI | MR | DOI | MR

[14] R. L. Viana, A. M. Batista, C. A.S. Batista, K. C. Iarosz, “Lyapunov spectrum of chaotic maps with a long-range coupling mediated by a diffusing substance”, Nonlinear Dynamics, 87:3 (2017), 1589–1601 | DOI | MR | Zbl | DOI | MR | Zbl

[15] E. Y. Frisman, G. P. Neverova, O. L. Revutskaya, “Complex dynamics of the population with a simple age structure”, Ecological Modelling, 222:12 (2011), 1943–1950 | DOI | DOI

[16] M. P. Kulakov, G. P. Neverova, E. Ya. Frisman, “Multistabilnost v modelyakh dinamiki migratsionno-svyazannykh populyatsii s vozrastnoi strukturoi”, Nelineinaya dinamika, 10:4 (2014), 407–425 | DOI | DOI

[17] I. A. Shepelev, T. E. Vadivasova, A. V. Bukh, G. I. Strelkova, V. S. Anishchenko, “New type of chimera structures in a ring of bistable FitzHugh-Nagumo oscillators with nonlocal interaction”, Physics Letters A, 381:16 (2017), 1398–1404 | DOI | MR | DOI | MR

[18] I. A. Shepelev, A. V. Bukh, T. E. Vadivasova, V. S. Anishchenko, A. Zakharova, “Double-well chimeras in 2D lattice of chaotic bistable elements”, Commun. Nonlinear Sci. Numer. Simulat., 54 (2018), 50–61 | DOI | MR | Zbl | DOI | MR | Zbl

[19] I. A. Shepelev, T. E. Vadivasova, “Uedinennye sostoyaniya v 2D-reshetke bistabilnykh elementov pri globalnom i blizkom k globalnomu kharaktere vzaimodeistviya”, Nelineinaya dinamika, 13:3 (2017), 317–329 | DOI | MR | DOI | MR

[20] M. P. Kulakov, E. Ya. Frisman, “Klasterizatsiya i khimery v modeli prostranstvenno-vremennoi dinamiki populyatsii s vozrastnoi strukturoi”, Nelineinaya dinamika, 14:1 (2018), 13–31 | DOI | MR | DOI | MR

[21] J. P. Crutchfield, K. Kaneko, “Phenomenology of Spatio-Terriporal Chaos”, Directions in Chaos, v. 1, ed. Hao B-L., 1987, 272–353 | DOI | MR | DOI | MR

[22] K. Kaneko, “Clustering, coding, switching, hierarchical, ordering, and control in network of chaotic elements”, Physica D, 41 (1990), 137–172 | DOI | MR | Zbl | DOI | MR | Zbl

[23] A. V. Tuzinkevich, E. Ya. Frisman, “Dissipative structures and patchiness in spatial distribution of plants”, Ecol. Modelling, 52 (1990), 207–223 | DOI | DOI

[24] M. P. Kulakov, “Ob odnoi modeli migratsionno svyazannykh populyatsii s dalnodeistvuyuschimi vzaimodeistviyami”, Regionalnye problemy, 21:2 (2018), 52–60 | DOI | DOI

[25] P. Jaros, S. Brezetsky, R. Levchenko, D. Dudkowski, T. Kapitaniak, Y. Maistrenko, “Solitary states for coupled oscillators with inertia”, Chaos, 28 (2018), 011103 | DOI | MR | Zbl | DOI | MR | Zbl