VirtEl -- software for magnetic encephalography data analysis by the method of virtual electrodes
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 340-354.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method of analyzing magnetic encephalography data, the virtual electrode method, was developed. According to magnetic encephalography data, a functional tomogram is constructed – the spatial distribution of field sources on a discrete grid. A functional tomogram displays on the head space the information contained in the multichannel time series of an encephalogram. This is achieved by solving the inverse problem for all elementary oscillations extracted using the Fourier transform. Each oscillation frequency corresponds to a three-dimensional grid node in which the source is located. The user sets the location, size and shape of the brain area for a detailed study of the frequency structure of a functional tomogram – a virtual electrode. The set of oscillations that fall into a given region represents the partial spectrum of this region. The time series of the encephalogram measured by the virtual electrode is restored using this spectrum. The method was applied to the analysis of magnetic encephalography data in two variations – a virtual electrode of a large radius and a point virtual electrode.
@article{MBB_2019_14_1_a20,
     author = {S. D. Rykunov and E. D. Rykunova and A. I. Boyko and M. N. Ustinin},
     title = {VirtEl -- software for magnetic encephalography data analysis by the method of virtual electrodes},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {340--354},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a20/}
}
TY  - JOUR
AU  - S. D. Rykunov
AU  - E. D. Rykunova
AU  - A. I. Boyko
AU  - M. N. Ustinin
TI  - VirtEl -- software for magnetic encephalography data analysis by the method of virtual electrodes
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 340
EP  - 354
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a20/
LA  - ru
ID  - MBB_2019_14_1_a20
ER  - 
%0 Journal Article
%A S. D. Rykunov
%A E. D. Rykunova
%A A. I. Boyko
%A M. N. Ustinin
%T VirtEl -- software for magnetic encephalography data analysis by the method of virtual electrodes
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 340-354
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a20/
%G ru
%F MBB_2019_14_1_a20
S. D. Rykunov; E. D. Rykunova; A. I. Boyko; M. N. Ustinin. VirtEl -- software for magnetic encephalography data analysis by the method of virtual electrodes. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 340-354. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a20/

[1] D. K. Su, J. G. Ojemann, “Electrocorticographic Sensorimotor Mapping”, Clin. Neurophysiol., 124:6 (2013), 1044–1048 | DOI

[2] T. J. Richner, S. Thongpang, S. K. Brodnick, A. A. Schendel, R. W. Falk, L. A. Krugner-Higby, R. Pashaie, J. C. Williams, “Optogenetic micro-electrocorticography for modulating and localizing cerebral cortexactivity”, Journal of Neural Engineering, 11:1 (2014), 016010 | DOI

[3] M. V. Aleksandrov, A. Yu. Ulitin, “Intraoperatsionnaya elektrokortikografiya: vozmozhnosti i perspektivy”, Vestnik rossiiskoi voenno-meditsinskoi akademii, 4:4 (2012), 245–254

[4] K. Roessler, E. Heynold, M. Buchfelder, H. Stefan, H. M. Hamerb, “Current value of intraoperative electrocorticography (iopECoG)”, Epilepsy Behavior, 91 (2019), 20–24 | DOI

[5] L. Yue, F. Zhang, X. Lu, Y. Wan, L. Hu, “Simultaneous Recordings of Cortical Local Field Potentials and Electrocorticograms in Response to Nociceptive Laser Stimuli from Freely Moving Rats”, J. Vis. Exp., 143 (2019) | DOI

[6] A. V. Nurmikko, J. P. Donoghue, L. R. Hochberg, W. R. Patterson, Y. K. Song, Ch. W. Bull, D. A. Borton, F. Laiwalla, S. Park, Y. Ming, J. Aceros, “Listening to Brain Microcircuits for Interfacing With External World-Progress in Wireless Implantable Microelectronic Neuroengineering Devices: Experimental systems are described for electrical recording in the brain using multiple microelectrodes and short range implantable or wearable broadcasting units”, Proceedings of the IEEE, 98 (2010), 375–388 | DOI

[7] J. L. Collinger, B. Wodlinger, J. E. Downey, W. Wang, E. C. Tyler-Kabara, D. J. Weber, A. JC. McMorland, M. Velliste, M. L. Boninger, A. B. Schwartz, “High-performance neuroprosthetic control by an individual with tetraplegia”, The Lancet, 381 (2013), 557–564 | DOI

[8] K. D. Katyal, M. S. Johannes, S. Kellis, T. Aflalo, Ch. Klaes, T. G. McGee, M. P. Para, Y. Shi, B. Lee, K. Pejsa et al., “A collaborative BCI approach to autonomous control of a prosthetic limb system”, 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2014, 1479–1482 | DOI

[9] J. J. Wheeler, K. Baldwin, A. Kindle, D. Guyon, B. Nugent, C. Segura, E. N. Eskandar, “An implantable 64-channel neural interface with reconfigurable recording and stimulation”, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2015, 7837–7840 | DOI

[10] J. J. Wheeler, Brain-Computer Interfaces using Electrocorticography and Surface Stimulation, Phd Dissertation, Washington University Open Scholarship, 2018 | DOI

[11] P. Romanelli, M. Piangerelli, D. Ratel, C. Gaude, T. Costecalde, C. Puttilli, M. Picciafuoco, A. Benabid, N. Torres, “A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface”, Journal of Neurosurgery, 2018, 1–14 | DOI

[12] C. F. Ferris, J. Tenney, “Functional Magnetic Resonance Imaging in Epilepsy: Methods and Applications Using Awake Animals”, Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics, eds. Carl L. Faingold, Hal Blumenfeld, Academic Press, 2014, 37–54 | DOI | MR

[13] A. Blumenthal Dramé, E. Malaia, “Shared neural and cognitive mechanisms in action and language: The multiscale information transfer framework”, WIREs Cogn. Sci., 10 (2019), e1484 | DOI

[14] J. P. Szaflarski, D. Gloss, J. R. Binder, W. D. Gaillard, A. J. Golby, S. K. Holland, J. Ojemann, D. C. Spencer, S. J. Swanson, J. A. French, W. H. Theodore, “Practice guideline summary: Use of fMRI in the presurgical evaluation of patients with epilepsy”, Neurology, 88:4 (2017), 395–402 | DOI

[15] A. Belyaev, K. Pek Kyung, N. Brennan, A. Kholodnyi, “Primenenie funktsionalnoi magnitno-rezonansnoi tomografii v klinike”, Nauchnyi obzor, Russian Electronic Journal of Radiology, 4:1 (2014), 14–24

[16] V. Litvak, A. Eusebio, A. Jha, R. Oostenveld, G. R. Barnes, W. D. Penny, L. Zrinzo, M. I. Hariz, P. Limousin, K. J. Friston et al., “Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients”, Neuroimage, 50:4-3 (2010), 1578–1588 | DOI

[17] R. D. Pascual-Marqui, “Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details”, Methods. Find. Exp. Clin. Pharmaco, 24:D (2002), 5–12

[18] R. R. Llinás, M. N. Ustinin, S. D. Rykunov, A. I. Boyko, V. V. Sychev, K. D. Walton, G. M. Rabello, J. Garcia, “Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data”, Frontiers in Neuroscience, 9 (2015), 373 | DOI

[19] R. R. Llinás, M. N. Ustinin, Precise Frequency-Pattern Analysis to Decompose Complex Systems into Functionally Invariant Entities, U.S. Patent. US Patent App. Publ. 20160012011 A1, 01/14/2016

[20] R. R. Llinás, M. N. Ustinin, “Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization”, Front. Neural Circuits, 8 (2014), 43 | DOI

[21] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, E. Moulines, “A blind source separation technique using second-order statistics”, IEEE Trans. Signal Processing, 45 (1997), 434–444 | DOI

[22] J. Sarvas, “Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem”, Phys. Med. Biol., 32 (1987), 11–22 | DOI

[23] E. D. Rykunova, S. D. Rykunov, A. I. Boiko, M. N. Ustinin, “Programmnyi kompleks dlya analiza dannykh magnitnoi entsefalografii metodom virtualnykh elektrodov”, Doklady Mezhdunarodnoi konferentsii «Matematicheskaya biologiya i bioinformatika», v. 7, ed. Lakhno V. D., IMPB RAN, Puschino, e37 | DOI

[24] S. D. Rykunov, M. N. Ustinin, A. G. Polyanin, V. V. Sychev, R. R. Linas, “Kompleks programm dlya rascheta partsialnykh spektrov golovnogo mozga cheloveka”, Matematicheskaya biologiya i bioinformatika, 11:1 (2016), 127–140 | DOI

[25] G. Niso, C. Rogers, J. T. Moreau, L. Y. Chen, C. Madjar, S. Das, E. Bock, F. Tadel, A. Evans, P. Jolicoeur, S. Baillet, “OMEGA: The Open MEG Archive”, Neuroimage, 124 (2015), 1182–1187 | DOI

[26] E. Baçar, “A review of alpha activity in integrative brain function: Fundamental physiology, sensory coding, cognition and pathology”, International Journal of Psychophysiology, 86:1 (2012), 1–24 | DOI

[27] D. Cohen, E. Givler, “Magnetomyography: magnetic fields around the human body produced by skeletal muscles”, Appl. Phys. Lett., 21:3 (1972), 114–116 | DOI