Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_1_a20, author = {S. D. Rykunov and E. D. Rykunova and A. I. Boyko and M. N. Ustinin}, title = {VirtEl -- software for magnetic encephalography data analysis by the method of virtual electrodes}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {340--354}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a20/} }
TY - JOUR AU - S. D. Rykunov AU - E. D. Rykunova AU - A. I. Boyko AU - M. N. Ustinin TI - VirtEl -- software for magnetic encephalography data analysis by the method of virtual electrodes JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 340 EP - 354 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a20/ LA - ru ID - MBB_2019_14_1_a20 ER -
%0 Journal Article %A S. D. Rykunov %A E. D. Rykunova %A A. I. Boyko %A M. N. Ustinin %T VirtEl -- software for magnetic encephalography data analysis by the method of virtual electrodes %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 340-354 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a20/ %G ru %F MBB_2019_14_1_a20
S. D. Rykunov; E. D. Rykunova; A. I. Boyko; M. N. Ustinin. VirtEl -- software for magnetic encephalography data analysis by the method of virtual electrodes. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 340-354. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a20/
[1] D. K. Su, J. G. Ojemann, “Electrocorticographic Sensorimotor Mapping”, Clin. Neurophysiol., 124:6 (2013), 1044–1048 | DOI
[2] T. J. Richner, S. Thongpang, S. K. Brodnick, A. A. Schendel, R. W. Falk, L. A. Krugner-Higby, R. Pashaie, J. C. Williams, “Optogenetic micro-electrocorticography for modulating and localizing cerebral cortexactivity”, Journal of Neural Engineering, 11:1 (2014), 016010 | DOI
[3] M. V. Aleksandrov, A. Yu. Ulitin, “Intraoperatsionnaya elektrokortikografiya: vozmozhnosti i perspektivy”, Vestnik rossiiskoi voenno-meditsinskoi akademii, 4:4 (2012), 245–254
[4] K. Roessler, E. Heynold, M. Buchfelder, H. Stefan, H. M. Hamerb, “Current value of intraoperative electrocorticography (iopECoG)”, Epilepsy Behavior, 91 (2019), 20–24 | DOI
[5] L. Yue, F. Zhang, X. Lu, Y. Wan, L. Hu, “Simultaneous Recordings of Cortical Local Field Potentials and Electrocorticograms in Response to Nociceptive Laser Stimuli from Freely Moving Rats”, J. Vis. Exp., 143 (2019) | DOI
[6] A. V. Nurmikko, J. P. Donoghue, L. R. Hochberg, W. R. Patterson, Y. K. Song, Ch. W. Bull, D. A. Borton, F. Laiwalla, S. Park, Y. Ming, J. Aceros, “Listening to Brain Microcircuits for Interfacing With External World-Progress in Wireless Implantable Microelectronic Neuroengineering Devices: Experimental systems are described for electrical recording in the brain using multiple microelectrodes and short range implantable or wearable broadcasting units”, Proceedings of the IEEE, 98 (2010), 375–388 | DOI
[7] J. L. Collinger, B. Wodlinger, J. E. Downey, W. Wang, E. C. Tyler-Kabara, D. J. Weber, A. JC. McMorland, M. Velliste, M. L. Boninger, A. B. Schwartz, “High-performance neuroprosthetic control by an individual with tetraplegia”, The Lancet, 381 (2013), 557–564 | DOI
[8] K. D. Katyal, M. S. Johannes, S. Kellis, T. Aflalo, Ch. Klaes, T. G. McGee, M. P. Para, Y. Shi, B. Lee, K. Pejsa et al., “A collaborative BCI approach to autonomous control of a prosthetic limb system”, 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2014, 1479–1482 | DOI
[9] J. J. Wheeler, K. Baldwin, A. Kindle, D. Guyon, B. Nugent, C. Segura, E. N. Eskandar, “An implantable 64-channel neural interface with reconfigurable recording and stimulation”, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2015, 7837–7840 | DOI
[10] J. J. Wheeler, Brain-Computer Interfaces using Electrocorticography and Surface Stimulation, Phd Dissertation, Washington University Open Scholarship, 2018 | DOI
[11] P. Romanelli, M. Piangerelli, D. Ratel, C. Gaude, T. Costecalde, C. Puttilli, M. Picciafuoco, A. Benabid, N. Torres, “A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface”, Journal of Neurosurgery, 2018, 1–14 | DOI
[12] C. F. Ferris, J. Tenney, “Functional Magnetic Resonance Imaging in Epilepsy: Methods and Applications Using Awake Animals”, Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics, eds. Carl L. Faingold, Hal Blumenfeld, Academic Press, 2014, 37–54 | DOI | MR
[13] A. Blumenthal Dramé, E. Malaia, “Shared neural and cognitive mechanisms in action and language: The multiscale information transfer framework”, WIREs Cogn. Sci., 10 (2019), e1484 | DOI
[14] J. P. Szaflarski, D. Gloss, J. R. Binder, W. D. Gaillard, A. J. Golby, S. K. Holland, J. Ojemann, D. C. Spencer, S. J. Swanson, J. A. French, W. H. Theodore, “Practice guideline summary: Use of fMRI in the presurgical evaluation of patients with epilepsy”, Neurology, 88:4 (2017), 395–402 | DOI
[15] A. Belyaev, K. Pek Kyung, N. Brennan, A. Kholodnyi, “Primenenie funktsionalnoi magnitno-rezonansnoi tomografii v klinike”, Nauchnyi obzor, Russian Electronic Journal of Radiology, 4:1 (2014), 14–24
[16] V. Litvak, A. Eusebio, A. Jha, R. Oostenveld, G. R. Barnes, W. D. Penny, L. Zrinzo, M. I. Hariz, P. Limousin, K. J. Friston et al., “Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients”, Neuroimage, 50:4-3 (2010), 1578–1588 | DOI
[17] R. D. Pascual-Marqui, “Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details”, Methods. Find. Exp. Clin. Pharmaco, 24:D (2002), 5–12
[18] R. R. Llinás, M. N. Ustinin, S. D. Rykunov, A. I. Boyko, V. V. Sychev, K. D. Walton, G. M. Rabello, J. Garcia, “Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data”, Frontiers in Neuroscience, 9 (2015), 373 | DOI
[19] R. R. Llinás, M. N. Ustinin, Precise Frequency-Pattern Analysis to Decompose Complex Systems into Functionally Invariant Entities, U.S. Patent. US Patent App. Publ. 20160012011 A1, 01/14/2016
[20] R. R. Llinás, M. N. Ustinin, “Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization”, Front. Neural Circuits, 8 (2014), 43 | DOI
[21] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, E. Moulines, “A blind source separation technique using second-order statistics”, IEEE Trans. Signal Processing, 45 (1997), 434–444 | DOI
[22] J. Sarvas, “Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem”, Phys. Med. Biol., 32 (1987), 11–22 | DOI
[23] E. D. Rykunova, S. D. Rykunov, A. I. Boiko, M. N. Ustinin, “Programmnyi kompleks dlya analiza dannykh magnitnoi entsefalografii metodom virtualnykh elektrodov”, Doklady Mezhdunarodnoi konferentsii «Matematicheskaya biologiya i bioinformatika», v. 7, ed. Lakhno V. D., IMPB RAN, Puschino, e37 | DOI
[24] S. D. Rykunov, M. N. Ustinin, A. G. Polyanin, V. V. Sychev, R. R. Linas, “Kompleks programm dlya rascheta partsialnykh spektrov golovnogo mozga cheloveka”, Matematicheskaya biologiya i bioinformatika, 11:1 (2016), 127–140 | DOI
[25] G. Niso, C. Rogers, J. T. Moreau, L. Y. Chen, C. Madjar, S. Das, E. Bock, F. Tadel, A. Evans, P. Jolicoeur, S. Baillet, “OMEGA: The Open MEG Archive”, Neuroimage, 124 (2015), 1182–1187 | DOI
[26] E. Baçar, “A review of alpha activity in integrative brain function: Fundamental physiology, sensory coding, cognition and pathology”, International Journal of Psychophysiology, 86:1 (2012), 1–24 | DOI
[27] D. Cohen, E. Givler, “Magnetomyography: magnetic fields around the human body produced by skeletal muscles”, Appl. Phys. Lett., 21:3 (1972), 114–116 | DOI