Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_1_a19, author = {O. F. Voropaeva and P. D. Lisachev and S. D. Senotrusova and Yu. I. Shokin}, title = {Hyperactivation of the {p53{\textendash}microRNA} signaling pathway: mathematical model of variants of antitumor therapy}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {355--372}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a19/} }
TY - JOUR AU - O. F. Voropaeva AU - P. D. Lisachev AU - S. D. Senotrusova AU - Yu. I. Shokin TI - Hyperactivation of the p53–microRNA signaling pathway: mathematical model of variants of antitumor therapy JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 355 EP - 372 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a19/ LA - ru ID - MBB_2019_14_1_a19 ER -
%0 Journal Article %A O. F. Voropaeva %A P. D. Lisachev %A S. D. Senotrusova %A Yu. I. Shokin %T Hyperactivation of the p53–microRNA signaling pathway: mathematical model of variants of antitumor therapy %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 355-372 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a19/ %G ru %F MBB_2019_14_1_a19
O. F. Voropaeva; P. D. Lisachev; S. D. Senotrusova; Yu. I. Shokin. Hyperactivation of the p53–microRNA signaling pathway: mathematical model of variants of antitumor therapy. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 355-372. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a19/
[1] K. H. Vousden, C. Prives, “Blinded by the light: The growing complexity of p53”, Cell, 137 (2009), 413–431 | DOI
[2] A. O. Zheltukhin, P. M. Chumakov, “Povsednevnye i indutsiruemye funktsii gena p53”, Uspekhi biol. khimii, 50 (2010), 447–516
[3] P. A. Muller, K. H. Vousden, “p53 mutations in cancer”, Nat. Cell Biol, 15 (2013), 2–8 | DOI
[4] J. Liu, C. Zhang, W. Hu, Z. Feng, “Tumor suppressor p53 and its mutants in cancer metabolism”, Cancer Lett., 356 (2015), 197–203 | DOI
[5] V. P. Almazov, D. V. Kochetkov, P. M. Chumakov, “p53 instrument dlya terapii zlokachestvennykh zabolevanii cheloveka”, Molekulyarnaya biologiya, 41:6 (2007), 947–963
[6] J. Liu, C. Zhang, Y. Zhao, Z. Feng, “MicroRNA control of p53”, J. Cell. Biochemyu, 118 (2017), 7–14 | DOI
[7] L. He, X. He, L. P. Lim, E. D. Stanchina, Z. Xuan, Y. Liang, W. Xue, L. Zender, J. Magnus, D. Ridzon et al, “A microRNA component of the p53 tumour suppressor network”, Nature, 447 (2007), 1130–1134 | DOI
[8] V. Tarasov, P. Jung, B. Verdoodt, D. Lodygin, A. Epanchintsev, A. Menssen, G. Meister, H. Hermeking, “Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34A is a p53 target that induces apoptosis and G1-arrest”, Cell Cycle, 6:13 (2007), 1586–1593, 34 pp. | DOI
[9] S. Shin, E. M. Lee, H. J. Cha, S. Bae, J. H. Jung, S. M. Lee, Y. Yoon, H. Lee, S. Kim, H. Kim et al, “MicroRNAs that respond to histone deacetylase inhibitor SAHA and p53 in HCT116 human colon carcinoma cells”, Int. J. Oncol., 35 (2009), 1343–1352 | DOI
[10] A. Bisio, V. De Sanctis, V. Del Vescovo, M. A. Denti, A. G. Jegga, A. Inga, Y. Ciribilli, “Identification of new p53 target microRNAs by bioinformatics and functional analysis”, BMC Cancer, 13 (2013), 552 | DOI
[11] Z. J. Ren, X. Y. Nong, Y. R. Lv, H. H. Sun, P. P. An, F. Wang, X. Li, M. Liu, H. Tang, “Mir-509-5p joins the Mdm2/p53 feedback loop and regulates cancer cell growth”, Cell Death Dis., 5 (2014), e1387 | DOI
[12] M. Selbach, B. Schwanhausser, N. Thierfelder, Z. Fang, R. Khanin, N. Rajewsky, “Widespread changes in protein synthesis induced by microRNAs”, Nature, 455 (2008), 58–63 | DOI
[13] D. P. Bartel, “Metazoan microRNAs”, Cell, 173 (2018), 20–51 | DOI
[14] S. Vasudevan, “Posttranscriptional upregulation by microRNAs”, WIREs RNA, 3 (2012), 311–330 | DOI
[15] H. I. Suzuki, K. Yamagata, K. Sugimoto, T. Iwamoto, S. Kato, K. Miyazono, “Modulation of microRNA processing by p53”, Nature, 460 (2009), 529–533 | DOI
[16] S. L. Harris, A. J. Levine, “The p53 pathway: positive and negative feedback loops”, Oncogene, 24 (2005), 2899–2908 | DOI
[17] P. M. Chumakov, “Belok p53 i ego universalnye funktsii v mnogokletochnom organizme”, Uspekhi biol. khimii, 47 (2007), 3–52
[18] X. Lu, “Tied up in loops: positive and negative autoregulation of p53”, Cold Spring Harb. Perspect. Biol., 2 (2010), a000984 | DOI
[19] J. V. Tricoli, J. W. Jacobson, “MicroRNA: Potential for cancer detection, diagnosis, and prognosis”, Cancer Res., 67 (2007), 4553–4555 | DOI
[20] C. Xie, W. Chen, M. Zhang, Q. Cai, W. Xu, X. Li, S. Jiang, “MDM4 regulation by the let-7 miRNA family in the DNA damage response of glioma cells”, FEBS Lett., 589 (2015), 1958–1965 | DOI
[21] M. Rahman, F. Lovat, G. Romano, F. Calore, M. Acunzo, E. H. Bell, P. Nana-Sinkam, “miR-15b/16-2 regulates factors that promote p53 phosphorylation and augments the DNA damage response following radiation in the lung”, J. Biol. Chem., 289 (2014), 26406–26416 | DOI
[22] X. Zhang, G. Wan, S. Mlotshwa, V. Vance, F. G. Berger, H. Chen, X. Lu, “Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway”, Cancer Res., 70 (2010), 7176–7186 | DOI
[23] M. V.C. Issler, J. C. M. Mombach, “MicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response”, PLoS ONE, 12 (2017), e0185794 | DOI
[24] A. P. Ugalde, A. J. Ramsay, J. de la Rosa, I. Varela, G. Mariño, J. Cadiñanos, J. Lu, J. M. Freije, C. López-Otín, “Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53”, EMBO J, 30 (2011), 2219–2232 | DOI
[25] B. Wang, D. Li, C. Sidler, R. Rodriguez-Juarez, N. Singh, M. Heyns, Y. Ilnytskyy, R. T. Bronson, O. Kovalchuk, “A suppressive role of ionizing radiation-responsive miR-29c in the development of liver carcinoma via targeting WIP1”, Oncotarget, 6 (2015), 9937–9950 | DOI
[26] G. T. Bommer, I. Gerin, Y. Feng, A. J. Kaczorowski, R. Kuick, R. E. Love, Y. Zhai, T. J. Giordano, Z. S. Qin, B. B. Moore et al, “p53-mediated activation of miRNA34 candidate tumor-suppressor genes”, Curr. Biol., 17 (2007), 1298–1307 | DOI
[27] M. Yamakuchi, C. J. Lowenstein, “MiR-34, SIRT1, and p53: The feedback loop”, Cell Cycle, 8 (2009), 712–715 | DOI
[28] M. Neault, F. Couteau, Bonneau, V. De Guire, F. A. Mallette, “Molecular regulation of cellular senescence by microRNAs: implications in cancer and age-related diseases”, Int. Rev. Cell. Mol. Biol., 334 (2017), 27–98 | DOI
[29] J. Zhang, Q. Sun, Z. Zhang, S. Ge, Z. G. Han, W. T. Chen, “Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the Mdm2-p53 feedback loop”, Oncogene, 32 (2013), 61–69 | DOI
[30] F. Pichiorri, S. S. Suh, A. Rocci, L. De Luca, C. Taccioli, R. Santhanam, W. Zhou, Benson D. M. Jr, C. Hofmainster, H. Alder et al, “Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development”, Cancer Cell, 18 (2010), 367–381 | DOI
[31] F. Fornari, M. Milazzo, M. Galassi, E. Callegari, A. Veronese, H. Miyaaki, S. Sabbioni, V. Mantovani, E. Marasco, P. Chieco et al., “p53/mdm2 feedback loop sustains miR-221 expression and dictates the response to anticancer treatments in hepatocellular carcinoma”, Mol. Cancer Res., 12 (2014), 203–216 | DOI
[32] M. Scarola, S. Schoeftner, C. Schneider, R. Benetti, “miR-335 directly targets Rb1 (pRb/p105) in a proximal connection to p53-dependent stress response”, Cancer Res, 70 (2010), 6925–6933 | DOI
[33] J. Xiao, H. Lin, X. Luo, X. Luo, Z. Wang, “miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress”, EMBO J, 30 (2011), 524–532 | DOI
[34] E. Batchelor, A. Loewer, “Recent progress and open challenges in modeling p53 dynamics in single cells”, Curr. Opin. Syst. Biol., 3 (2017), 54–59 | DOI
[35] O. F. Voropaeva, Yu. I. Shokin, “Chislennoe modelirovanie obratnoi svyazi p53-Mdm2 v biologicheskom protsesse apoptoza”, Vychislitelnye tekhnologii, 17:6 (2012), 47–63
[36] O. F. Voropaeva, Yu. I. Shokin, L. M. Nepomnyaschikh, S. R. Senchukova, Matematicheskoe modelirovanie funktsionirovaniya i regulyatsii biologicheskoi sistemy p53-Mdm2, izd-vo RAMN, M., 2014, 176 pp.
[37] O. F. Voropaeva, S. D. Senotrusova, Yu. I. Shokin, “Deregulyatsiya p53-zavisimykh mikroRNK: rezultaty matematicheskogo modelirovaniya”, Matematicheskaya biologiya i bioinformatika, 12:1 (2017), 151–175 | DOI
[38] C. Zhao, Y. Zhang, A. S. Popel, “Mechanistic computational models of microRNA-mediated signaling networks in human diseases”, Int. J. Mol. Sci., 20:2 (2019) | DOI
[39] R. Khanin, V. Vinciotti, “Computational Modeling of Post-Transcriptional Gene Regulation by MicroRNAs”, J. Computational Biology, 15:3 (2008), 305–316 | DOI | MR
[40] T. Nissan, R. Parker, “Computational analysis of miRNA-mediated repression of translation: Implications for models of translation initiation inhibition”, RNA, 14:8 (2008), 1480–1491 | DOI
[41] A. Zinovyev, N. Morozova, N. Nonne, E. Barillot, A. Harel-Bellan, A. N. Gorban, “Dynamical modeling of microRNA action on the protein translation process”, BMC Systems Biology, 4:13 (2010) | DOI
[42] A. Zinovyev, N. Morozova, A. Gorban, A. Harel-Belan, “Mathematical modeling of microRNA-mediated mechanisms of translation repression”, Adv. Exp. Med. Biol., 774 (2013), 189–224 | DOI
[43] V. P. Zhdanov, “Effect of non-coding RNA on bistability and oscillations in mRNA-protein interplay”, Biophys. Rev. Lett., 5:2 (2010), 89–107 | DOI
[44] V. P. Zhdanov, “Kinetic models of gene expression including non-coding RNAs”, Physics Reports, 500:1 (2011), 1–42 | DOI
[45] V. P. Zhdanov, “Intracellular miRNA or siRNA delivery and function”, BioSystems, 171 (2018), 20–25 | DOI
[46] H. W. Kang, M. Crawford, M. Fabbri, G. Nuovo, M. Garofalo, S. P. Nana-Sinkam, A. Friedman, “A mathematical model for microRNA in lung cancer”, PLoS ONE, 8:1 (2013), e53663 | DOI
[47] E. Nikolova, I. Jordanov, N. K. Vitanov, “Dynamical features of the quasi-stationary microRNA-mediated protein translation process supported by eIF4F translation initiation factors”, Computers and Mathematics with Applications, 66 (2013), 1716–1725 | DOI | MR | Zbl
[48] U. Schmitz, O. Wolkenhauer, Ju. Vera, “MicroRNA cancer regulation: advanced concepts, bioinformatics and systems biology tools”, Advances in experimental medicine and biology, 774 (2013) | DOI
[49] Ju. Vera, U. Schmitz, X. Lai, D. Engelmann, F. M. Khan, O. Wolkenhauer, B. M. Putzer, “Kinetic modeling-based detection of genetic signatures that provide chemoresistance via the E2F1-p73/DNp73-miR-205 network”, Cancer Research, 73:12 (2013), 3511–3524 | DOI
[50] X. Lai, U. Schmitz, S. K. Gupta, A. Bhattacharya, M. Kunz, O. Wolkenhauer, Ju. Vera, “Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs”, Nucleic Acids Research, 40:18 (2012), 8818–8834 | DOI
[51] S. Nikolov, Ju. Vera, U. Schmitz, O. Wolkenhauer, “A model-based strategy to investigate the role of microRNA regulation in cancer signalling networks”, Theory in Biosciences, 130:1 (2011), 55–69 | DOI
[52] X. Lai, O. Wolkenhauer, Ju. Vera, “Modeling miRNA regulation in cancer signaling systems: mir-regulation of the p53/Sirt1 signaling module”, Computational Modeling of Signaling Networks. Methods in Molecular Biology, 880 (2012), 87–108, 34 pp. | DOI
[53] X. Lai, O. Wolkenhauer, Ju. Vera, “Understanding microRNA-mediated gene regulatory networks through mathematical modelling”, Nucleic Acids Research, 44:13 (2016), 6019–6035 | DOI
[54] X. Lai, A. Bhattacharya, U. Schmitz, M. Kunz, Ju. Vera, O. Wolkenhauer, “A systems' biology approach to study microRNA-mediated gene regulatory networks”, BioMed Research International, 2013 (2013), 703849 | DOI
[55] Z. Luo, R. Azencott, Y. Zhao, “Modeling miRNA-mRNA interactions: fitting chemical kinetics equations to microarray data”, BMC Systems Biology, 8:19 (2014) | DOI
[56] H. K. Ooi, L. Ma, Integral control feedback circuit for the reactivation of malfunctioning p53 pathway, arXiv: (accessed 17.03.2019) 1510.04136 [q-bio.MN]
[57] M. R. Azam, S. Fazal, M. Ullah, A. I. Bhatti, “System-based strategies for p53 recovery”, IET Syst. Biol., 12:3 (2018), 101–107 | DOI
[58] R. Moore, H. K. Ooi, T. Kang, L. Bleris, L. Ma, “MiR-192-mediated positive feedback loop controls the robustness of stress-induced p53 oscillations in breast cancer cells”, PLoS Computational Biology, 11:12 (2015), e1004653 | DOI
[59] K. Jonak, M. Kurpas, K. Szoltysek, P. Janus, A. Abramowicz, K. Puszynski, “A novel mathematical model of ATM/p53/NF-$\kappa$B pathways points to the importance of the DDR switch-off mechanisms”, BMC Systems Biology, 10:75 (2016) | DOI
[60] Z. Liu, J. Shen, S. Cai, F. Yan, MicroRNA regulatory network: structure and function, Springer, 2018, 231 pp. | DOI | MR | Zbl
[61] T. Zhang, P. Brazhnik, J. J. Tyson, “Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis”, Cell Cycle, 6:1 (2007), 85–94 | DOI
[62] S. Gupta, D. A. Silveira, J. C. M. Mombach, “Modeling the role of microRNA-in the regulation of the G2/M cell cycle checkpoint in prostate LNCaP cells under ionizing radiation”, PLoS ONE, 13:7 (2018), 0200768, 449 pp. | DOI
[63] G. Tiana, M. H. Jensen, K. Sneppen, “Time delay as a key to apoptosis induction in the p53 network”, Eur. Phys. J. B, 29 (2002), 135–140 | DOI
[64] O. F. Voropaeva, A. O. Kozlova, S. D. Senotrusova, “Chislennyi analiz perekhoda ot uravneniya s zapazdyvaniem k sisteme ODU v matematicheskoi modeli seti onkomarkerov”, Vychislitelnye tekhnologii, 21:2 (2016), 12–25 | Zbl
[65] O. F. Voropaeva, S. D. Senotrusova, “Perekhod ot uravneniya s zapazdyvaniem k sisteme obyknovennykh differentsialnykh uravnenii v modeli seti onkomarkerov”, Matematicheskoe modelirovanie, 29:9 (2017), 135–154 | MR | Zbl
[66] S. D. Senotrusova, O. F. Voropaeva, “Matematicheskoe modelirovanie funktsionirovaniya polozhitelnoi svyazi v sisteme onkomarkerov r53-mikroRNK”, Sib. zhurn. vychisl. matematiki, 22:3 (2019), 17–34 | MR
[67] A. Kitadate, S. Ikeda, K. Teshima, M. Ito, I. Toyota, N. Hasunuma, N. Takahashi, T. Miyagaki, M. Sugaya, H. Tagawa, “MicroRNA-16 mediates the regulation of a senescence-apoptosis switch in cutaneous T-cell and other non-Hodgkin lymphomas”, Oncogene, 35:28 (2016), 3692–3704 | DOI
[68] R. Munk, A. C. Panda, I. Grammatikakis, M. Gorospe, K. Abdelmohsen, “Senescence-associated microRNAs”, International Review of Cell and Molecular Biology, 334 (2017), 177–205 | DOI
[69] E. Batchelor, C. S. Mock, I. Bhan, A. Loewer, G. Lahav, “Recurrent initiation: A mechanism for triggering p53 pulses in response to DNA damage”, Molecular Cell, 30:3 (2008), 277–289 | DOI
[70] R. Yang, B. Huang, Y. Zhu, Y. Li, F. Liu, J. Shi, “Cell type-dependent bimodal activation engenders a dynamic mechanism of chemoresistance”, Science Advances, 4:12 (2018), 53 | DOI | Zbl
[71] N. Okada, C. P. Lin, M. C. Ribeiro, A. Biton, G. Lai, X. He, P. Bu, H. Vogel, D. M. Jablons, A. C. Keller et al, “A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression”, Genes Development, 28 (2014), 438–450 | DOI
[72] C. P. Concepcion, Y. C. Han, P. Mu, C. Bonetti, E. Yao, A. D-Andrea, J. A. Vidigal, W. P. Maughan, P. Ogrodowski, A. Ventura, “Intact p53-dependent responses in mir-34-deficient mice”, PLoS Genetics, 8:7 (2012), e1002797 | DOI
[73] F. Navarro, J. Lieberman, “miR-34 and p53: new insights into a complex functional relationship”, PLoS ONE, 10 (2015), e0132767 | DOI
[74] J. Yu, V. Baron, D. Mercola, T. Mustelin, E. D. Adamson, “A network of p73, p53 and Egr1 is required for effcient apoptosis in tumor cells”, Cell Death and Differentiation, 14 (2007), 436–446 | DOI
[75] R. Kato, S. Mizuno, M. Kadowaki, K. Shiozaki, M. Akai, K. Nakagawa, T. Oikawa, M. Iguchi, K. Osanai, T. Ishizaki et al, “Sirt1 expression is associated with CD31 expression in blood cells from patients with chronic obstructive pulmonary disease”, Respiratory Research, 17 (2016), 139 | DOI
[76] R. E. Castro, D. M. S. Ferreira, M. B. Afonso, P. M. Borralho, M. V. Machado, H. Cortez-Pinto, C. M. Rodrigues, “miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease”, J. Hepatology, 58:1 (2013), 119–125 | DOI
[77] J. R. Baker, C. Vuppusetty, T. Colley, A. I. Papaioannou, P. Fenwick, L. Donnelly, K. Ito, P. J. Barnes, “Oxidative stress dependent microRNA-34a activation via PI3K$\alpha$ reduces the expression of sirtuin-1 and sirtuin-6 in epithelial cells”, Scientific Reports, 6 (2016), 34 pp. | DOI