Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_1_a16, author = {A. S. Lelekov and A. B. Borovkov and T. M. Novikova and I. N. Gudvilovich and A. L. Avsiyan and O. A. Memetshayeva}, title = {Modeling the dynamics of pigment content in cells of {\textit{Dunaliella} salina} {Teod.} unicellular alga at the stage of carotenogenesis}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {279--289}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a16/} }
TY - JOUR AU - A. S. Lelekov AU - A. B. Borovkov AU - T. M. Novikova AU - I. N. Gudvilovich AU - A. L. Avsiyan AU - O. A. Memetshayeva TI - Modeling the dynamics of pigment content in cells of \textit{Dunaliella salina} Teod. unicellular alga at the stage of carotenogenesis JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 279 EP - 289 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a16/ LA - ru ID - MBB_2019_14_1_a16 ER -
%0 Journal Article %A A. S. Lelekov %A A. B. Borovkov %A T. M. Novikova %A I. N. Gudvilovich %A A. L. Avsiyan %A O. A. Memetshayeva %T Modeling the dynamics of pigment content in cells of \textit{Dunaliella salina} Teod. unicellular alga at the stage of carotenogenesis %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 279-289 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a16/ %G ru %F MBB_2019_14_1_a16
A. S. Lelekov; A. B. Borovkov; T. M. Novikova; I. N. Gudvilovich; A. L. Avsiyan; O. A. Memetshayeva. Modeling the dynamics of pigment content in cells of \textit{Dunaliella salina} Teod. unicellular alga at the stage of carotenogenesis. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 279-289. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a16/
[1] M. P. Sánchez-Saavedra, F. Y. Castro-Ochoa, V. M. Nava-Ruiz, D. A. Ruiz-Güereca, A. L. Villag-mez-Aranda, F. Siqueiros-Vargas, C. A. Molina-Cárdenas, “Effects of nitrogen source and irradiance on Porphyridium cruentum”, J. Appl. Phycol., 30:2 (2018), 783–792 | DOI
[2] C. E. Silva, E. Sforza, A. Bertucco, “Stability of carbohydrate production in continuous microalgal cultivation under nitrogen limitation: effect of irradiation regime and intensity on Tetradesmus obliquus”, J. Appl. Phycol., 30:1 (2018), 261–270 | DOI
[3] P. P. Lamers, M. Janssen, R. C. De Vos, R. J. Bino, R. H. Wijffels, “Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga”, J. Biotechnol., 162:1 (2012), 21–27 | DOI
[4] H. Lv, X. Cui, F. Wahid, F. Xia, C. Jia S. Zhong, “Analysis of the physiological and molecular responses of Dunaliella salina to macronutrient deprivation”, PLoS ONE, 11:3 (2016) | DOI
[5] A. K. Minhas, P. Hodgson, C. J. Barrow, A. Adholeya, “A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids”, Frontiers in Microbiology, 7 (2016), 546 | DOI
[6] A. Ben-Amotz, A. Shaish, M. Avron, “Mode of action of the massively accumulated-carotene of Dunaliella bardawil in proteting the algae aqainst damaqe by excess irradiation”, Plant. Physiol., 91:3 (1989), 1040–1043 | DOI
[7] J. E. Cloern, C. Grenz, L. Vidergar-Lucas, “An empirical model of the phytoplankton chlorophyll:carbon ratio the conversation between productivity and growth”, Limnol. Oceanogr., 40:7 (1995), 1310–1321 | DOI
[8] Z. Z. Finenko, N. Hoepffner, R. Williams, S. A. Piontkovski, “Phytoplankton carbon to chlorophyll a rario: response to light, temperature and nutrient limitation”, Morskoi ekologicheskii zhurnal, 2:2 (2003), 40–64
[9] R. J. Geider, “Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton”, New Phytol., 106:1 (1987), 1–34 | DOI
[10] R. P. Trenkenshu, Kinetika substratzavisimykh reaktsii pri razlichnoi organizatsii metabolicheskikh sistem, EKOSI-Gidrofizika, Sevastopol, 2005, 89 pp.
[11] A. B. Borovkov, “Matematicheskaya model svetozavisimogo soderzhaniya pigmentov v kletkakh mikrovodoroslei dlya statsionarnogo dinamicheskogo ravnovesiya khemostatnoi kultury”, Biotekhnologiya vodoroslei, Ekologiya morya, 80, 2010, 17–24 | MR
[12] J. R. Nelson, “Rates and possible mechanism of light-dependent degradation of pigments in detritus derived from phytoplankton”, J. Mar. Res., 51:1 (1993), 155–179 | DOI
[13] A. B. Rubin, Biofizika, v 2 t., v. 1, Mir, M., 2002, 448 pp.
[14] R. P. Trenkenshu, A. S. Lelekov, Modelirovanie rosta mikrovodoroslei v kulture, OOO «Konstanta», Sevastopol, 2017, 152 pp.
[15] A. Shaish, M. Avron, A. Ben-Amotz, “Effect of ingibitors on the formation of stereoisomers in the biosynthesis of $\beta$-carotene in Dunaliella bardawil”, Plant. Cell. Physiol., 31:5 (1990), 689–696
[16] Metody fiziologo-biokhimicheskogo issledovaniya vodoroslei v gidrobiologicheskoi praktike, Naukova dumka, K., 1975, 247 pp.
[17] A. R. Wellburn, “The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution”, J. Plant Phys., 144 (1994), 307–313 | DOI
[18] A. E. Solovchenko, “Fiziologiya i adaptivnoe znachenie vtorichnogo karotinogeneza u zelenykh mikrovodoroslei”, Fiziologiya rastenii, 60:1 (2013), 3–16
[19] A. E. Solovchenko, E. A. Selivanova, K. A. Chekanov, R. A. Sidorov, N. V. Nemtseva, E. S. Lobakova, “Induction of secondary carotenogenesis in new halophile microalgae from the genus Dunaliella (Chlorophyceae)”, Biochemistry (Moscow), 80:11 (2015), 1508–1513 | DOI
[20] R. P. Trenkenshu, A. S. Lelekov, “Modelirovanie dinamiki azotistykh soedinenii v kletkakh mikrovodoroslei. 1. Nakopitelnaya kultura”, Mat. biol. i bioinf., 13:2 (2018), 348–359 | DOI