Modeling the dynamics of pigment content in cells of \textit{Dunaliella salina} Teod. unicellular alga at the stage of carotenogenesis
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 279-289.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is focused on modeling of chlorophyll and carotenoids content dynamics in the in cells of the unicellular algae D. salina, living in salt water, at carotenogenesis induction phase. A mathematical model of pigments content in microalgae cells, which experience excess of light energy and the limit of nutrient medium mineral components, is proposed. The model is based on assumption, that observed rate of variation in pigment concentration is an algebraic sum of the rates of synthesis, photodestruction and partial recovery of photo-oxidized pigments. The rate of secondary carotenoids synthesis does not depend on external conditions and is determined by the quantity of key enzyme complex and its turnover rate. The rate of secondary carotenoids and chlorophyll photodestruction depends on the effective light intensity and is proportional to the amount of absorbed photosynthetically active radiation energy. The verification of the derived equations was conducted in the course of D. salina cultivation at the carotenogenesis stage. The specific rate of chlorophyll a photodestruction was determined, which resulted in 0.12 days$^{-1}$. The secondary carotenoids concentration increases up to the maximum value, which is determined by the ratio of synthesis and photodestruction specific rates, as well as the maximum culture density. Under conditions of natural light in the Sevastopol region, the maximum concentration of carotenoids was 18.33 mg/l or 0.73 g/m$^2$.
@article{MBB_2019_14_1_a16,
     author = {A. S. Lelekov and A. B. Borovkov and T. M. Novikova and I. N. Gudvilovich and A. L. Avsiyan and O. A. Memetshayeva},
     title = {Modeling the dynamics of pigment content in cells of {\textit{Dunaliella} salina} {Teod.} unicellular alga at the stage of carotenogenesis},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {279--289},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a16/}
}
TY  - JOUR
AU  - A. S. Lelekov
AU  - A. B. Borovkov
AU  - T. M. Novikova
AU  - I. N. Gudvilovich
AU  - A. L. Avsiyan
AU  - O. A. Memetshayeva
TI  - Modeling the dynamics of pigment content in cells of \textit{Dunaliella salina} Teod. unicellular alga at the stage of carotenogenesis
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 279
EP  - 289
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a16/
LA  - ru
ID  - MBB_2019_14_1_a16
ER  - 
%0 Journal Article
%A A. S. Lelekov
%A A. B. Borovkov
%A T. M. Novikova
%A I. N. Gudvilovich
%A A. L. Avsiyan
%A O. A. Memetshayeva
%T Modeling the dynamics of pigment content in cells of \textit{Dunaliella salina} Teod. unicellular alga at the stage of carotenogenesis
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 279-289
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a16/
%G ru
%F MBB_2019_14_1_a16
A. S. Lelekov; A. B. Borovkov; T. M. Novikova; I. N. Gudvilovich; A. L. Avsiyan; O. A. Memetshayeva. Modeling the dynamics of pigment content in cells of \textit{Dunaliella salina} Teod. unicellular alga at the stage of carotenogenesis. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 279-289. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a16/

[1] M. P. Sánchez-Saavedra, F. Y. Castro-Ochoa, V. M. Nava-Ruiz, D. A. Ruiz-Güereca, A. L. Villag-mez-Aranda, F. Siqueiros-Vargas, C. A. Molina-Cárdenas, “Effects of nitrogen source and irradiance on Porphyridium cruentum”, J. Appl. Phycol., 30:2 (2018), 783–792 | DOI

[2] C. E. Silva, E. Sforza, A. Bertucco, “Stability of carbohydrate production in continuous microalgal cultivation under nitrogen limitation: effect of irradiation regime and intensity on Tetradesmus obliquus”, J. Appl. Phycol., 30:1 (2018), 261–270 | DOI

[3] P. P. Lamers, M. Janssen, R. C. De Vos, R. J. Bino, R. H. Wijffels, “Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga”, J. Biotechnol., 162:1 (2012), 21–27 | DOI

[4] H. Lv, X. Cui, F. Wahid, F. Xia, C. Jia S. Zhong, “Analysis of the physiological and molecular responses of Dunaliella salina to macronutrient deprivation”, PLoS ONE, 11:3 (2016) | DOI

[5] A. K. Minhas, P. Hodgson, C. J. Barrow, A. Adholeya, “A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids”, Frontiers in Microbiology, 7 (2016), 546 | DOI

[6] A. Ben-Amotz, A. Shaish, M. Avron, “Mode of action of the massively accumulated-carotene of Dunaliella bardawil in proteting the algae aqainst damaqe by excess irradiation”, Plant. Physiol., 91:3 (1989), 1040–1043 | DOI

[7] J. E. Cloern, C. Grenz, L. Vidergar-Lucas, “An empirical model of the phytoplankton chlorophyll:carbon ratio the conversation between productivity and growth”, Limnol. Oceanogr., 40:7 (1995), 1310–1321 | DOI

[8] Z. Z. Finenko, N. Hoepffner, R. Williams, S. A. Piontkovski, “Phytoplankton carbon to chlorophyll a rario: response to light, temperature and nutrient limitation”, Morskoi ekologicheskii zhurnal, 2:2 (2003), 40–64

[9] R. J. Geider, “Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton”, New Phytol., 106:1 (1987), 1–34 | DOI

[10] R. P. Trenkenshu, Kinetika substratzavisimykh reaktsii pri razlichnoi organizatsii metabolicheskikh sistem, EKOSI-Gidrofizika, Sevastopol, 2005, 89 pp.

[11] A. B. Borovkov, “Matematicheskaya model svetozavisimogo soderzhaniya pigmentov v kletkakh mikrovodoroslei dlya statsionarnogo dinamicheskogo ravnovesiya khemostatnoi kultury”, Biotekhnologiya vodoroslei, Ekologiya morya, 80, 2010, 17–24 | MR

[12] J. R. Nelson, “Rates and possible mechanism of light-dependent degradation of pigments in detritus derived from phytoplankton”, J. Mar. Res., 51:1 (1993), 155–179 | DOI

[13] A. B. Rubin, Biofizika, v 2 t., v. 1, Mir, M., 2002, 448 pp.

[14] R. P. Trenkenshu, A. S. Lelekov, Modelirovanie rosta mikrovodoroslei v kulture, OOO «Konstanta», Sevastopol, 2017, 152 pp.

[15] A. Shaish, M. Avron, A. Ben-Amotz, “Effect of ingibitors on the formation of stereoisomers in the biosynthesis of $\beta$-carotene in Dunaliella bardawil”, Plant. Cell. Physiol., 31:5 (1990), 689–696

[16] Metody fiziologo-biokhimicheskogo issledovaniya vodoroslei v gidrobiologicheskoi praktike, Naukova dumka, K., 1975, 247 pp.

[17] A. R. Wellburn, “The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution”, J. Plant Phys., 144 (1994), 307–313 | DOI

[18] A. E. Solovchenko, “Fiziologiya i adaptivnoe znachenie vtorichnogo karotinogeneza u zelenykh mikrovodoroslei”, Fiziologiya rastenii, 60:1 (2013), 3–16

[19] A. E. Solovchenko, E. A. Selivanova, K. A. Chekanov, R. A. Sidorov, N. V. Nemtseva, E. S. Lobakova, “Induction of secondary carotenogenesis in new halophile microalgae from the genus Dunaliella (Chlorophyceae)”, Biochemistry (Moscow), 80:11 (2015), 1508–1513 | DOI

[20] R. P. Trenkenshu, A. S. Lelekov, “Modelirovanie dinamiki azotistykh soedinenii v kletkakh mikrovodoroslei. 1. Nakopitelnaya kultura”, Mat. biol. i bioinf., 13:2 (2018), 348–359 | DOI