Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_1_a15, author = {O. L. Revutskaya and M. P. Kulakov and E. Ya. Frisman}, title = {Bistability and bifurcations in modified {Nicholson--Bailey} model with age-structure for prey}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {257--278}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a15/} }
TY - JOUR AU - O. L. Revutskaya AU - M. P. Kulakov AU - E. Ya. Frisman TI - Bistability and bifurcations in modified Nicholson--Bailey model with age-structure for prey JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 257 EP - 278 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a15/ LA - ru ID - MBB_2019_14_1_a15 ER -
%0 Journal Article %A O. L. Revutskaya %A M. P. Kulakov %A E. Ya. Frisman %T Bistability and bifurcations in modified Nicholson--Bailey model with age-structure for prey %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 257-278 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a15/ %G ru %F MBB_2019_14_1_a15
O. L. Revutskaya; M. P. Kulakov; E. Ya. Frisman. Bistability and bifurcations in modified Nicholson--Bailey model with age-structure for prey. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 257-278. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a15/
[1] V. Volterra, Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 2004, 288 pp.
[2] A. J. Nicholson, “Supplement: the Balance of Animal Populations”, Journal of Animal Ecology, 2:1 (1933), 131–178 | DOI
[3] A. J. Nicholson, V. A. Bailey, “The Balance of Animal Populations”, Proceedings of the Zoological Society of London, 105:3 (1935), 551–598 | DOI
[4] A. J. Nicholson, “An outline of the dynamics of animal populations”, Australian Journal of Zoology, 2 (1954), 9–65 | DOI
[5] A. Rosenzweig, R. H. MacArthur, “Graphical representation and stability conditions of predator-prey interaction”, Amer. Natur, 97 (1963), 209–223 | DOI
[6] A. N. Kolmogorov, “Kachestvennoe izuchenie matematicheskikh modelei dinamiki populyatsii”, Problemy kibernetiki, 1972, no. 5, 100–106
[7] M. P. Hassell, R. M. May, “Stability in insect host-parasite models”, Journal of Animal Ecology, 42 (1973), 693–726 | DOI
[8] A. D. Bazykin, Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 181 pp. | MR
[9] N. J. Mills, W. M. Getz, “Modelling the biological control of insect pests: a review of host-parasitoid models”, Ecological Modelling, 92 (1996), 121–143 | DOI
[10] M. P. Hassell, “Host-parasitoid population dynamics”, Journal of Animal Ecology, 69 (2000), 543–566 | DOI
[11] Yu. M. Svirezhev, D. O. Logofet, Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978, 352 pp. | MR
[12] A. Hastings, “Age-Dependent Predation Is Not a Simple Process. II. Wolves, Ungulates, and a Discrete Time Model for Predation on Juveniles with a Stabilizing Tail”, Theoretical population biology, 26 (1984), 271–282 | DOI | MR | Zbl
[13] J. M. Fryxell, A. Mosser, A. R.E. Sinclair, C. Packer, “Group formation stabilizes predator-prey dynamics”, Nature, 449 (2007), 1041–1043 | DOI
[14] K. C. Abbott, G. Dwyer, “Food limitation and insect outbreaks: complex dynamics in plant-herbivore models”, Journal of Animal Ecology, 76 (2007), 1004–1014 | DOI
[15] Yu. Odum, Ekologiya, V 2-kh t., v. 2, Mir, M., 1986, 376 pp.
[16] L. V. Nedorezov, Yu. V. Utyupin, “Nepreryvno-diskretnye modeli dinamiki chislennosti populyatsii”, Ekologiya, Seriya analiticheskikh obzorov mirovoi literatury, 95, 2011, 1–234
[17] G. V. Nikolskii, Ekologiya ryb, Vysshaya shkola, M., 1974, 357 pp.
[18] D. Pimlott, “Wolf predation, ungulate populations”, Am. Zool, 7 (1967), 267–278 | DOI
[19] J. Tanner, “The stability and intrinsic growth rates of prey and predator populations”, Ecology, 56 (1975), 855–867 | DOI
[20] F. Messier, “Ungulate population models with predation: a case study with the North American moose”, Ecology, 75:2 (1994), 478–488 | DOI
[21] S. P. Kucherenko, Zveri u sebya doma, Kn. izd., Khabarovsk, 1979, 432 pp.
[22] Y. Kang, D. Armbruster, “Noise and seasonal effects on the dynamics of plant-herbivore models with monotonic plant growth functions”, International Journal of Biomathematics, 4:3 (2011), 255–274 | DOI | MR | Zbl
[23] Y. Kang, D. Armbruster, Y. Kuang, “Dynamics of a plant-herbivore model”, Journal of Biological Dynamics, 2:2 (2008), 89–101 | DOI | MR | Zbl
[24] V. Weide, M. C. Varriale, F. M. Hilker, “Hydra effect and paradox of enrichment in discrete-time predator-prey models”, Mathematical Biosciences, 2018 | DOI | MR
[25] S. A. Gourley, Y. Kuang, “A stage structured predator-prey model and its dependence on maturation delay and death rate”, Journal of Mathematical Biology, 49:2 (2004), 188–200 | DOI | MR | Zbl
[26] P. A. Abrams, C. Quince, “The impact of mortality on predator population size and stability in systems with stage-structured prey”, Theoretical Population Biology, 68:4 (2005), 253–266 | DOI | Zbl
[27] K. Chakraborty, S. Jana, T. K. Kar, “Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting”, Applied Mathematics and Computation, 218:18 (2012), 9271–9290 | DOI | MR | Zbl
[28] J. Bhattacharyya, S. Pal, “Stage-Structured Cannibalism in a Ratio-Dependent System with Constant Prey Refuge and Harvesting of Matured Predator”, Differential Equations and Dynamical Systems, 24:3 (2016), 345–366 | DOI | MR | Zbl
[29] A. P. Shapiro, S. P. Luppov, Rekurrentnye uravneniya v teorii populyatsionnoi biologii, Nauka, M., 1983, 132 pp. | MR
[30] A. Wikan, “From chaos to chaos. An analysis of a discrete age-structured prey-predator model”, Journal of Mathematical Biology, 43:6 (2001), 471–500 | DOI | MR | Zbl
[31] A. Wikan, “An Analysis of Discrete Stage-Structured Prey and Prey-Predator Population Models”, Discrete Dynamics in Nature and Society, 2017 (2017), 9475854 | DOI | MR | Zbl
[32] S. Tang, L. Chen, “A discrete predator-prey system with age-structure for predator and natural barriers for prey”, Mathematical Modelling and Numerical Analysis, 35:4 (2001), 675–690 | DOI | MR | Zbl
[33] G. P. Neverova, O. L. Zhdanova, E. Ya. Frisman, “Modelirovanie dinamiki soobschestva «khischnik–zhertva» pri nalichii vozrastnykh struktur”, Matematicheskaya biologiya i bioinformatika, 14:1 (2019), 77–93 | DOI
[34] Y. Xiao, D. Cheng, S. Tang, “Dynamic complexities in predator-prey ecosystem models with age-structure for predator”, Chaos, Solitons and Fractals, 14 (2002), 1403–1411 | DOI | MR | Zbl
[35] M. Agarwal, S. Devi, “Persistence in a ratio-dependent predator-prey-resource model with stage structure for prey”, International Journal of Biomathematics, 3:3 (2010), 313–336 | DOI | MR | Zbl
[36] E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151 | DOI | MR
[37] E. Ya. Frisman, E. I. Skaletskaya, “Strannye attraktory v prosteishikh modelyakh dinamiki chislennosti biologicheskikh populyatsii”, Obozrenie prikladnoi i promyshlennoi matematiki, 1:6 (1994), 988 | Zbl
[38] R. Dazho, Osnovy ekologii, Progress, M., 1975, 416 pp.
[39] P. Inchausti, L. R. Ginzburg, “Small mammals cycles in northern Europe: patterns and evidence for the maternal effect hypothesis”, Journal of Animal Ecology, 67 (1998), 180–194 | DOI
[40] R. Ferriere, M. Gatto, “Chaotic population dynamics can result from natural selection”, Proceedings: Biological Sciences, 251:1330 (1993), 33–38 | DOI
[41] E. Ya. Frisman, G. P. Neverova, O. L. Revutskaya, M. P. Kulakov, “Rezhimy dinamiki modeli dvukhvozrastnoi populyatsii”, Izv. vuzov «PND», 18:2 (2010), 111–130
[42] E. Ya. Frisman, G. P. Neverova, O. L. Revutskaya, “Complex Dynamics of the Population with a Simple Age Structure”, Ecological Modelling, 222 (2011), 1943–1950 | DOI
[43] G. P. Neverova, E. Ya. Frisman, “Sravnitelnyi analiz vliyaniya razlichnykh tipov plotnostnoi regulyatsii na dinamiku chislennosti strukturirovannykh populyatsii”, Informatika i sistemy upravleniya, 1:43 (2015), 41–53
[44] O. L. Revutskaya, G. P. Neverova, M. P. Kulakov, E. Ya. Frisman, “Model dinamiki chislennosti dvukhvozrastnoi populyatsii: ustoichivost, multistabilnost i khaos”, Nelineinaya dinamika, 12:4 (2016), 591–603 | DOI | MR
[45] R. Kon, “Multiple attractors in host-parasitoid interactions: Coexistence and extinction”, Mathematical Biosciences, 201:1–2 (2006), 172–183 | DOI | MR | Zbl
[46] Y. Xiao, S. Tang, “The effect of initial density and parasitoid intergenerational survival rate on classical biological control”, Chaos, Solitons and Fractals, 37 (2008), 1048–1058 | DOI | MR | Zbl
[47] J. Huang, S. Liu, S. Ruan, D. Xiao, “Bifurcations in a discrete predator-prey model with nonmonotonic functional response”, J. Math. Anal. Appl, 464 (2018), 201–230 | DOI | MR | Zbl
[48] M. V. Pridnya, “Sostoyanie populyatsii evropeiskogo i amerikanskogo kashtana v svyazi s krifonekrozom i puti ikh ozdorovleniya”, Elektronnyi zhurnal «Issledovano v Rossii», 2003, no. 32, 330–339
[49] A. P. Popov, I. L. Tsvetkov, A. A. Belov, A. S. Konichev, N. E. Ivanushkina, G. A. Kochkina, S. M. Ozerskaya, “Molekulyarno-geneticheskaya identifikatsiya fitopatogennogo griba Cryphonectria Parasitica”, Mikrobiologiya, 79:2 (2010), 246–251
[50] G. Yu. Riznichenko, Lektsii po matematicheskim modelyam v biologii, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2011, 560 pp.
[51] G. A. Beglyarov, A. A. Smirnova, T. S. Batalova, G. A. Markelov, T. M. Petrova, Khimicheskaya i biologicheskaya zaschita rastenii, ed. G. A. Beglyarov, Kolos, M., 1983, 351 pp.
[52] B. Wang, D. N. Ferro, D. W. Hosmer, “Effectiveness of Trichogramma ostriniae and T. nubilale for controlling the European corn borer, Ostrinia nubilalis in sweet corn”, Entomologia Experimentalis et Applicata, 91 (1999), 297–303 | DOI