Bistability and bifurcations in modified Nicholson--Bailey model with age-structure for prey
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 257-278.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates dynamic modes of the predator-prey model with age structure for prey. We use a slight modification of the Nicholson–Bailey model to describe the interaction between predator and prey. We assume the population size is regulated by decreasing juvenile survival rate with growth of age class sizes. Conditions for sustainable coexistence of interacting species are described. It is shown that the coexistence of species becomes possible if there are a transcritical or saddle-node (tangential) bifurcations. Due to the saddle-node bifurcation there is bistability in the system of interacting species: predator either coexists with prey or dies depending on the initial conditions. It is shown that the range of demographic parameters, for which the prey and predator coexist, can significantly increase with growth of survival of adult prey or the proportion of predators born or the prey consumption rate of the predator. We studied the oscillation scenarios of interacting population, influences of reproduction, survival and self-regulation rates of population prey and age-dependent predation as well as variations in the current number on transitions between different dynamic modes. It is shown that an increase in the birth rate of the prey under intraspecific competition can lead to a dynamics destabilization and to oscillations appearance in numbers. Age-dependent predation is shown to be a stabilizing influence. At the same time, with a high birth rate of the prey, the system stability is ensured by the high survival rate of adult prey. It was found that in the model parametric space, both bistability and multistability arises, which are not related to each other. Consequently, even a small variation of the current population size leads to more complex behavior of the interacting species, and can give a significant change in both the observed dynamic mode and the coexistence scenario of the species.
@article{MBB_2019_14_1_a15,
     author = {O. L. Revutskaya and M. P. Kulakov and E. Ya. Frisman},
     title = {Bistability and bifurcations in modified {Nicholson--Bailey} model with age-structure for prey},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {257--278},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a15/}
}
TY  - JOUR
AU  - O. L. Revutskaya
AU  - M. P. Kulakov
AU  - E. Ya. Frisman
TI  - Bistability and bifurcations in modified Nicholson--Bailey model with age-structure for prey
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 257
EP  - 278
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a15/
LA  - ru
ID  - MBB_2019_14_1_a15
ER  - 
%0 Journal Article
%A O. L. Revutskaya
%A M. P. Kulakov
%A E. Ya. Frisman
%T Bistability and bifurcations in modified Nicholson--Bailey model with age-structure for prey
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 257-278
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a15/
%G ru
%F MBB_2019_14_1_a15
O. L. Revutskaya; M. P. Kulakov; E. Ya. Frisman. Bistability and bifurcations in modified Nicholson--Bailey model with age-structure for prey. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 257-278. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a15/

[1] V. Volterra, Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 2004, 288 pp.

[2] A. J. Nicholson, “Supplement: the Balance of Animal Populations”, Journal of Animal Ecology, 2:1 (1933), 131–178 | DOI

[3] A. J. Nicholson, V. A. Bailey, “The Balance of Animal Populations”, Proceedings of the Zoological Society of London, 105:3 (1935), 551–598 | DOI

[4] A. J. Nicholson, “An outline of the dynamics of animal populations”, Australian Journal of Zoology, 2 (1954), 9–65 | DOI

[5] A. Rosenzweig, R. H. MacArthur, “Graphical representation and stability conditions of predator-prey interaction”, Amer. Natur, 97 (1963), 209–223 | DOI

[6] A. N. Kolmogorov, “Kachestvennoe izuchenie matematicheskikh modelei dinamiki populyatsii”, Problemy kibernetiki, 1972, no. 5, 100–106

[7] M. P. Hassell, R. M. May, “Stability in insect host-parasite models”, Journal of Animal Ecology, 42 (1973), 693–726 | DOI

[8] A. D. Bazykin, Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 181 pp. | MR

[9] N. J. Mills, W. M. Getz, “Modelling the biological control of insect pests: a review of host-parasitoid models”, Ecological Modelling, 92 (1996), 121–143 | DOI

[10] M. P. Hassell, “Host-parasitoid population dynamics”, Journal of Animal Ecology, 69 (2000), 543–566 | DOI

[11] Yu. M. Svirezhev, D. O. Logofet, Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978, 352 pp. | MR

[12] A. Hastings, “Age-Dependent Predation Is Not a Simple Process. II. Wolves, Ungulates, and a Discrete Time Model for Predation on Juveniles with a Stabilizing Tail”, Theoretical population biology, 26 (1984), 271–282 | DOI | MR | Zbl

[13] J. M. Fryxell, A. Mosser, A. R.E. Sinclair, C. Packer, “Group formation stabilizes predator-prey dynamics”, Nature, 449 (2007), 1041–1043 | DOI

[14] K. C. Abbott, G. Dwyer, “Food limitation and insect outbreaks: complex dynamics in plant-herbivore models”, Journal of Animal Ecology, 76 (2007), 1004–1014 | DOI

[15] Yu. Odum, Ekologiya, V 2-kh t., v. 2, Mir, M., 1986, 376 pp.

[16] L. V. Nedorezov, Yu. V. Utyupin, “Nepreryvno-diskretnye modeli dinamiki chislennosti populyatsii”, Ekologiya, Seriya analiticheskikh obzorov mirovoi literatury, 95, 2011, 1–234

[17] G. V. Nikolskii, Ekologiya ryb, Vysshaya shkola, M., 1974, 357 pp.

[18] D. Pimlott, “Wolf predation, ungulate populations”, Am. Zool, 7 (1967), 267–278 | DOI

[19] J. Tanner, “The stability and intrinsic growth rates of prey and predator populations”, Ecology, 56 (1975), 855–867 | DOI

[20] F. Messier, “Ungulate population models with predation: a case study with the North American moose”, Ecology, 75:2 (1994), 478–488 | DOI

[21] S. P. Kucherenko, Zveri u sebya doma, Kn. izd., Khabarovsk, 1979, 432 pp.

[22] Y. Kang, D. Armbruster, “Noise and seasonal effects on the dynamics of plant-herbivore models with monotonic plant growth functions”, International Journal of Biomathematics, 4:3 (2011), 255–274 | DOI | MR | Zbl

[23] Y. Kang, D. Armbruster, Y. Kuang, “Dynamics of a plant-herbivore model”, Journal of Biological Dynamics, 2:2 (2008), 89–101 | DOI | MR | Zbl

[24] V. Weide, M. C. Varriale, F. M. Hilker, “Hydra effect and paradox of enrichment in discrete-time predator-prey models”, Mathematical Biosciences, 2018 | DOI | MR

[25] S. A. Gourley, Y. Kuang, “A stage structured predator-prey model and its dependence on maturation delay and death rate”, Journal of Mathematical Biology, 49:2 (2004), 188–200 | DOI | MR | Zbl

[26] P. A. Abrams, C. Quince, “The impact of mortality on predator population size and stability in systems with stage-structured prey”, Theoretical Population Biology, 68:4 (2005), 253–266 | DOI | Zbl

[27] K. Chakraborty, S. Jana, T. K. Kar, “Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting”, Applied Mathematics and Computation, 218:18 (2012), 9271–9290 | DOI | MR | Zbl

[28] J. Bhattacharyya, S. Pal, “Stage-Structured Cannibalism in a Ratio-Dependent System with Constant Prey Refuge and Harvesting of Matured Predator”, Differential Equations and Dynamical Systems, 24:3 (2016), 345–366 | DOI | MR | Zbl

[29] A. P. Shapiro, S. P. Luppov, Rekurrentnye uravneniya v teorii populyatsionnoi biologii, Nauka, M., 1983, 132 pp. | MR

[30] A. Wikan, “From chaos to chaos. An analysis of a discrete age-structured prey-predator model”, Journal of Mathematical Biology, 43:6 (2001), 471–500 | DOI | MR | Zbl

[31] A. Wikan, “An Analysis of Discrete Stage-Structured Prey and Prey-Predator Population Models”, Discrete Dynamics in Nature and Society, 2017 (2017), 9475854 | DOI | MR | Zbl

[32] S. Tang, L. Chen, “A discrete predator-prey system with age-structure for predator and natural barriers for prey”, Mathematical Modelling and Numerical Analysis, 35:4 (2001), 675–690 | DOI | MR | Zbl

[33] G. P. Neverova, O. L. Zhdanova, E. Ya. Frisman, “Modelirovanie dinamiki soobschestva «khischnik–zhertva» pri nalichii vozrastnykh struktur”, Matematicheskaya biologiya i bioinformatika, 14:1 (2019), 77–93 | DOI

[34] Y. Xiao, D. Cheng, S. Tang, “Dynamic complexities in predator-prey ecosystem models with age-structure for predator”, Chaos, Solitons and Fractals, 14 (2002), 1403–1411 | DOI | MR | Zbl

[35] M. Agarwal, S. Devi, “Persistence in a ratio-dependent predator-prey-resource model with stage structure for prey”, International Journal of Biomathematics, 3:3 (2010), 313–336 | DOI | MR | Zbl

[36] E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151 | DOI | MR

[37] E. Ya. Frisman, E. I. Skaletskaya, “Strannye attraktory v prosteishikh modelyakh dinamiki chislennosti biologicheskikh populyatsii”, Obozrenie prikladnoi i promyshlennoi matematiki, 1:6 (1994), 988 | Zbl

[38] R. Dazho, Osnovy ekologii, Progress, M., 1975, 416 pp.

[39] P. Inchausti, L. R. Ginzburg, “Small mammals cycles in northern Europe: patterns and evidence for the maternal effect hypothesis”, Journal of Animal Ecology, 67 (1998), 180–194 | DOI

[40] R. Ferriere, M. Gatto, “Chaotic population dynamics can result from natural selection”, Proceedings: Biological Sciences, 251:1330 (1993), 33–38 | DOI

[41] E. Ya. Frisman, G. P. Neverova, O. L. Revutskaya, M. P. Kulakov, “Rezhimy dinamiki modeli dvukhvozrastnoi populyatsii”, Izv. vuzov «PND», 18:2 (2010), 111–130

[42] E. Ya. Frisman, G. P. Neverova, O. L. Revutskaya, “Complex Dynamics of the Population with a Simple Age Structure”, Ecological Modelling, 222 (2011), 1943–1950 | DOI

[43] G. P. Neverova, E. Ya. Frisman, “Sravnitelnyi analiz vliyaniya razlichnykh tipov plotnostnoi regulyatsii na dinamiku chislennosti strukturirovannykh populyatsii”, Informatika i sistemy upravleniya, 1:43 (2015), 41–53

[44] O. L. Revutskaya, G. P. Neverova, M. P. Kulakov, E. Ya. Frisman, “Model dinamiki chislennosti dvukhvozrastnoi populyatsii: ustoichivost, multistabilnost i khaos”, Nelineinaya dinamika, 12:4 (2016), 591–603 | DOI | MR

[45] R. Kon, “Multiple attractors in host-parasitoid interactions: Coexistence and extinction”, Mathematical Biosciences, 201:1–2 (2006), 172–183 | DOI | MR | Zbl

[46] Y. Xiao, S. Tang, “The effect of initial density and parasitoid intergenerational survival rate on classical biological control”, Chaos, Solitons and Fractals, 37 (2008), 1048–1058 | DOI | MR | Zbl

[47] J. Huang, S. Liu, S. Ruan, D. Xiao, “Bifurcations in a discrete predator-prey model with nonmonotonic functional response”, J. Math. Anal. Appl, 464 (2018), 201–230 | DOI | MR | Zbl

[48] M. V. Pridnya, “Sostoyanie populyatsii evropeiskogo i amerikanskogo kashtana v svyazi s krifonekrozom i puti ikh ozdorovleniya”, Elektronnyi zhurnal «Issledovano v Rossii», 2003, no. 32, 330–339

[49] A. P. Popov, I. L. Tsvetkov, A. A. Belov, A. S. Konichev, N. E. Ivanushkina, G. A. Kochkina, S. M. Ozerskaya, “Molekulyarno-geneticheskaya identifikatsiya fitopatogennogo griba Cryphonectria Parasitica”, Mikrobiologiya, 79:2 (2010), 246–251

[50] G. Yu. Riznichenko, Lektsii po matematicheskim modelyam v biologii, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2011, 560 pp.

[51] G. A. Beglyarov, A. A. Smirnova, T. S. Batalova, G. A. Markelov, T. M. Petrova, Khimicheskaya i biologicheskaya zaschita rastenii, ed. G. A. Beglyarov, Kolos, M., 1983, 351 pp.

[52] B. Wang, D. N. Ferro, D. W. Hosmer, “Effectiveness of Trichogramma ostriniae and T. nubilale for controlling the European corn borer, Ostrinia nubilalis in sweet corn”, Entomologia Experimentalis et Applicata, 91 (1999), 297–303 | DOI