Polaron in electric field and vibrational spectrum of polyacetylene
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 150-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, the evolution of a polaron in polyacetylene in electric field is studied in detail. It is shown that the dependence of the polaron velocity on the applied field is determined by the peculiarities of the vibrational spectrum of polyacetylene. The spectrum is calculated numerically using the Hessian, the matrix of the second derivatives of the potential energy of the system. A supersonic polaron moving in an electric field generates coherent vibrations of the optical branch of the spectrum of the polyacetylene. The phase velocity of these oscillations is equal to the polaron velocity. An additional condition for the excitation of a mode with a certain phase velocity is its correspondence to the Fourier spectrum of an impulse with polaron shape.
@article{MBB_2019_14_1_a13,
     author = {T. Yu. Astakhova and G. A. Vinogradov},
     title = {Polaron in electric field and vibrational spectrum of polyacetylene},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {150--159},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a13/}
}
TY  - JOUR
AU  - T. Yu. Astakhova
AU  - G. A. Vinogradov
TI  - Polaron in electric field and vibrational spectrum of polyacetylene
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 150
EP  - 159
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a13/
LA  - ru
ID  - MBB_2019_14_1_a13
ER  - 
%0 Journal Article
%A T. Yu. Astakhova
%A G. A. Vinogradov
%T Polaron in electric field and vibrational spectrum of polyacetylene
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 150-159
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a13/
%G ru
%F MBB_2019_14_1_a13
T. Yu. Astakhova; G. A. Vinogradov. Polaron in electric field and vibrational spectrum of polyacetylene. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 150-159. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a13/

[1] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, “Electrical conductivity in doped polyacetylene”, Phys. Rev. Lett., 39:17 (1977), 1098–1101 | DOI

[2] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)$_x$”, J. Chem. Soc., Chem. Commun., 16:16 (1977), 578–580 | DOI

[3] A. J. Heeger, “Nobel lecture: semiconducting and metallic polymers: the fourth generation of polymeric materials”, Rev. Mod. Phys., 73:3 (2001), 681–700 | DOI

[4] W. P. Su, J. R. Schrieffer, A. J. Heeger, “Solitons in polyacetylene”, Phys. Rev. Lett., 42:25 (1979), 1698–1701 | DOI

[5] A. J. Heeger, S. Kivelson, J. R. Su, W. P. Schrieffer, “Solitons in conducting polymers”, Rev. Mod. Phys., 60:3 (1988), 781–850 | DOI

[6] R. Jackiw, C. Rebbi, “Solitons with fermion number 1/2”, Phys. Rev. D, 13:12 (1976), 3398–3409 | DOI | MR

[7] W. P. Su, J. R. Schrieffer, A. J. Heeger, “Soliton excitations in polyacetylene”, Phys. Rev. B, 22:3 (1980), 2099–2011; Erratum: Su W.P., Schrieffer J.R., Heeger A.J., “Soliton excitations in polyacetylene”, Phys. Rev. B, 28:2 (1983), 1138–1138 | MR

[8] E. J. Meier, F. A. An, B. Gadway, “Observation of the topological soliton state in the Su-Schrieffer-Heeger model”, Nature Communications, 7 (2016), 13986 | DOI

[9] Y. Ono, A. Terai, “Motion of charged soliton in polyacetylene due to electric field”, J. Phys. Soc. Japan, 59:8 (1990), 2893–2904 | DOI

[10] Y. Arikabe, M. Kuwabara, Y. Ono, “Dynamics of an acoustic polaron in one-dimensional electron-lattice system”, J. Phys. Soc. Japan, 65:5 (1996), 1317–1324 | DOI

[11] A. Johansson, S. Stafström, “Polaron dynamics in a system of coupled conjugated polymer chains”, Phys. Rev. Lett., 86:16 (2001), 3602–3605 | DOI

[12] A. A. Johansson, S. Stafström, “Nonadiabatic simulations of polaron dynamics”, Phys. Rev. B, 69 (2004), 235205 | DOI

[13] X. Liu, K. Gao, J. Fu, Y. Li, J. Wei, Sh. Xie, “Effect of the electric field mode on the dynamic process of a polaron”, Phys. Rev. B, 74 (2006), 172301 | DOI

[14] X. J. Liu, K. Gao, Y. Li, J. H. Wei, Sh. J. Xie, “Two-step dissociation of a polaron in conjugated polymers”, Chinese Physics, 16:7 (2007), 2091–2105 | DOI

[15] W. F. da Cunha, P. H. de Oliveira Neto, R. Gargano, G. M. e Silva, “Temperature Effects on Polaron Stability in Polyacetylene”, Intern. J. Quant. Chem., 108 (2008), 2448–2453 | DOI

[16] M. V.A. da Silva, P. H. de Oliveira Neto, W. F. da Cunha, R. Gargano, G. M. e Silva, “Supersonic quasi-particles dynamics in organic semiconductors”, Chem. Phys. Lett., 550 (2012), 146–149 | DOI

[17] Y. Yao, Y. Qiu, Ch. Q. Wu, “Dissipative dynamics of charged polarons in organic molecules”, J. Phys.: Condens. Matter, 23 (2011), 305401 | DOI

[18] L. A. Ribeiro, W. F. da Cunha, P. H. de Oliveria Neto, R. Gargano, G. M. e Silva, “Effects of temperature and electric field induced phase transitions on the dynamics of polarons and bipolarons”, New J. Chem., 37 (2013), 28292836 | DOI

[19] L. A. Ribeiro, S. S. de Brito, P. H. de Oliveira Neto, “Trap-assisted charge transport at conjugated polymer interfaces”, Chem. Phys. Lett., 644 (2016), 121–126 | DOI

[20] D. M. Basko, E. M. Conwell, “Stationary polaron motion in a polymer chain at high electric fields”, Phys. Rev. Lett., 88 (2002), 056401 | DOI

[21] J. H. Ojeda, R. P.A. Lima, F. Domi-nguez-Adame, “Trapping and motion of polarons in weakly disordered DNA molecules”, J. Phys.: Condens. Matter, 21 (2009), 285105 | DOI

[22] V. D. Lakhno, “Davydov's solitons in a homogeneous nucleotide chain”, Int. J. Quant. Chem., 110 (2010), 127–137 | DOI

[23] A. N. Korshunova, V. D. Lakhno, “Modelirovanie statsionarnykh i nestatsionarnykh rezhimov dvizheniya zaryada v odnorodnoi kholsteinovskoi tsepochke v postoyannom elektricheskom pole”, Zhurnal tekhnicheskoi fiziki, 88:9 (2018), 1312–1319

[24] V. D. Lakhno, A. N. Korshunova, “Bloch oscillations of a soliton in a molecular chain”, Euro. Phys. J. B, 55 (2007), 85–87 | DOI

[25] H. N. Nazareno, P. E. de Brito, “Bloch oscillations as generators of polarons in a 1D crystal”, Physica B, 494 (2016), 1–6 | DOI

[26] T. Yu. Astakhova, G. A. Vinogradov, V. A. Kashin, “Polyaron v elektricheskom pole kak generator kogerentnykh kolebanii reshetki”, Khim. fizika, 37:11 (2018), 15–24

[27] S. A. Brazovskii, N. N. Kirova, “Eksitony, polyarony i bipolyarony v provodyaschikh polimerakh”, Pisma v ZhETF, 33:1 (1981), 6–10

[28] J. Malek, S. L. Drechsler, G. Paasch, K. Hallberg, “Solitonic approach to the dimerization problem in correlated one-dimensional systems”, Phys. Rev. B, 56:14 (1997), 8467 | DOI

[29] V. D. Lakhno, A. N. Korshunova, “Electron motion in a Holstein molecular chain in an electric field”, Euro. Phys. J. B, 79 (2011), 147–151 | DOI

[30] R. Ravichandran, S. Sundarrajan, J. R. Venugopal, S. Mukherjee, S. Ramakrishna, “Applications of conducting polymers and their issues in biomedical engineering”, J. R. Soc. Interface, 7 (2010), S579–S559 | DOI

[31] M. Ates, “A review study of (bio)sensor systems based on conducting polymers”, Materials Science and Engineering, 33:4, 1853–1859, 2013 | DOI | MR