Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_1_a12, author = {A. S. Nikityuk and E. A. Korznikova and S. V. Dmitriev and O. B. Neumark}, title = {DNA breathers and cell dynamics}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {137--149}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a12/} }
TY - JOUR AU - A. S. Nikityuk AU - E. A. Korznikova AU - S. V. Dmitriev AU - O. B. Neumark TI - DNA breathers and cell dynamics JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 137 EP - 149 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a12/ LA - en ID - MBB_2019_14_1_a12 ER -
A. S. Nikityuk; E. A. Korznikova; S. V. Dmitriev; O. B. Neumark. DNA breathers and cell dynamics. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 137-149. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a12/
[1] L. V. Yakushevich, Nonlinear physics of DNA, WILEY-VCH Verlag GmbH Co. KGaA, Weinheim, 2004, 205 pp.
[2] O. B. Naimark, “Structural-scaling transitions and localized distortion modes in the DNA double helix”, Phys. Mesomech., 10:1-2 (2007), 33–45 | DOI
[3] T. Dauxois, M. Peyrard, A. R. Bishop, “Entropy-driven DNA denaturation”, Phys. Rev. E, 47:1 (1993), 44–47 | DOI | MR
[4] A. Campa, “Bubble propagation in a helicoidal molecular chain”, Phys. Rev. E, 63:2 (2001), 021901 | DOI
[5] A. Alvarez, F. R. Romero, J. F. R. Archilla, J. Cuevas, P. V. Larsen, “Breather tapping and breather transmission in a DNA model with an interface”, Eur. Phys. J. B, 51:1 (2006), 119–130 | DOI
[6] L. V. Yakushevich, A. A. Grinevich, A. A. Ryasik, “Simulation of a kink movement in homogeneous and heterogeneous DNA sequences taking into account the dissipation”, Russ. J. Numer. Anal. Math. Modelling, 29:3 (2014), 197–204 | DOI | MR | Zbl
[7] S. Zdravkovic, M. Sataric, J. Tuszynskic, “Biophysical Implications of the Peyrard-Bishop-Dauxois Model of DNA Dynamics”, J. Comput. Theor. Nanosci., 1:2 (2004), 169–179 | DOI | MR
[8] V. D. Lakhno, “DNA nanobioelectronics”, International Journal of Quantum Chemistry, 108:11 (2008), 1970–1981 | DOI
[9] V. D. Lakhno, “Soliton-like solutions and electron transfer in DNA”, Journal of Biological Physics, 26:2 (2000), 133–147 | DOI
[10] V. D. Lakhno, N. S. Fialko, “Hole mobility in a homogeneous nucleotide chain”, JETP Letters, 78:5 (2003), 336–338 | DOI
[11] A. P. Chetverikov, K. S. Sergeev, V. D. Lakhno, “Trapping and transport of charges in DNA by mobile discrete breathers”, Mathematical Biology and Bioinformatics, 13:1 (2018), 1–12 | DOI | MR
[12] V. D. Lakhno, A. P. Chetverikov, “Excitation of bubbles and breathers in DNA and their interaction with the charge carriers”, Mathematical Biology and Bioinformatics, 9:1 (2014), 4–19 | DOI
[13] A. P. Chetverikov, K. S. Sergeev, V. D. Lakhno, “The excitation of mobile discrete breathers in DNA by initial disturbance of displacements or velocities of a few of adjacent nucleotide pairs”, Mathematical Biology and Bioinformatics, 12:2 (2017), 375–384 | DOI
[14] A. S. Shigaev, O. A. Ponomarev, V. D. Lakhno, “Theoretical and experimental investigations of DNA open states”, Mathematical Biology and Bioinformatics, 13, Suppl. (2018), t162–t267 | DOI
[15] M. G. Velarde, A. P. Chetverikov, W. Ebeling, S. V. Dmitriev, V. D. Lakhno, “From solitons to discrete breathers”, European Physical Journal B, 89:10 (2016), 233 | DOI | MR
[16] M. G. Velarde, A. P. Chetverikov, W. Ebeling, S. V. Dmitriev, V. D. Lakhno, “Wave motions along lattices with nonlinear on-site and inter-site potentials. Cooperation and/or competition leading to lattice Solitons and/or discrete breathers”, Proceedings of the Estonian Academy of Sciences, 64:3 (2015), 396–404 | DOI | MR
[17] S. V. Dmitriev, E. A. Korznikova, Y. A. Baimova, M. G. Velarde, “Discrete breathers in crystals”, Physics-Uspekhi, 59:5 (2016), 446–461 | DOI
[18] A. Sulaiman, F. P. Zen, H. Alatas, L. T. Handoko, “Dynamics of DNA breathing in the Peyrard-Bishop model with damping and external force”, Physica D, 241 (2012), 1640–1647 | DOI | Zbl
[19] A. N. Ikot, L. E. Akpabio, I. O. Akpan, M. I. Umo, E. E. Ituen, “Quantum damped mechanical oscillator”, International Journal of Optics, 1:5-6 (2010), 1–6 | DOI
[20] M. Peyrard, “Nonlinear dynamics and statistical physics of DNA”, Nonlinearity, 17:2 (2004), 1–40 | DOI | MR
[21] M. Barbi, S. Cocco, M. Peyrard, “Helicoidal model for DNA opening”, Physics Letters A, 253 (1999), 358–369 | DOI
[22] M. Barbi, S. Lepri, M. Peyrard, N. Theodorakopoulos, “Thermal denaturation of a helicoidal DNA model”, Physical Review E, 68:6 (2003), 061909 | DOI
[23] J. Argwal, D. Henning, “Breather solutions of a nonlinear DNA model including a longitudinal degree of freedom”, Physica A, 323 (2003), 519–533 | DOI | MR
[24] R. R. Klevecz, J. Bolen, G. Forrest, D. B. Murray, “A genomewide oscillation in transcription gates DNA replication and cell cycle”, Proc. Natl. Acad. Sci, 101:5 (2004), 1200–1205 | DOI
[25] K. Yoshikawa, “Field hypothesis on the self-regulation of gene expression”, J. Biol. Phys., 28:4 (2002), 701–712 | DOI
[26] S. Huang, G. Eishier, Y. Bar-Yam, D. E. Ingber, “Cell Fates as High-Dimensional Attractor States of a Complex Gene Regulatory Network”, Phys. Rev. Lett., 94 (2005), 128701–128705 | DOI
[27] A. Goldberg, C. D. Allis, E. Bernstein, “Epigenetics: A Landscape Takes Shape”, Cell, 128:4 (2007), 635–638 | DOI
[28] M. Tsuchiya, A. Giuliani, M. Hashimoto, J. Erenpreisa, K. Yoshikawa, “Emergent Self-Organized Criticality in gene expression dynamics: Temporal development of global phase transition revealed in a cancer cell line”, PLOS ONE, 11 (2015), 1–33
[29] M. Tsuchiya, M. Hashimoto, Y. Takenaka, I. N. Motoike, K. Yoshikawa, “Global genetic response in a cancer cell: Self-organized coherent expression dynamics”, PLOS ONE, 9 (2014), 1–33
[30] V. P. Tychinsky, A. V. Kretushev, I. V. Klemyashov, T. V. Vyshenskaya, A. A. Shtil, O. V. Zatsepina, “Coherent phase microscopy, a novel approach to study the physiological state of the nucleolus”, Doklady Biochemistry and Biophysics, 405 (2005), 432–436 | DOI
[31] E. Lyapunova, A. Nikituk, Y. Bayandin, O. Naimark, C. Rianna, M. Radmacher, “Passive microrheology of normal and cancer cells after ML7 treatment by atomic force microscopy”, International Conference on Physics of Cancer: Interdisciplinary Problems and Clinical Applications (PC'16), AIP Conference Proceedings, 1760, no. 1, 2016, 020046 | DOI
[32] G. Popescu, Quantitative Phase Imaging of Cells and Tissues, McGraw-Hill, 2011, 362 pp.
[33] C. Martinez-Torres, L. Berguiga, L. Streppa, E. Boyer-Provera, L. Schaeffer, J. Elezgaray, A. Arneodo, F. Argoul, “Diffraction phase microscopy: retrieving phase contours on living cells with a wavelet-based space-scale analysis”, Journal of Biomedical Optics, 19:3 (2014), 8–19 | DOI
[34] E. Gerasimova, B. Audit, S.-G. Roux, A. Khalil, F. Argoul, O. Naimark, A. Arneodo, “Multifractal analysis of dynamic infrared imaging of breast cancer”, Europhysics Letters, 104 (2013), 64001 | DOI
[35] E. Gerasimova, B. Audit, S.-G. Roux, A. Khalil, O. Gileva, F. Argoul, O. Naimark, A. Arneodo, “Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis”, Frontiers in Physiology, 5 (2014), 176 | DOI