DNA breathers and cell dynamics
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 137-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

Molecular-morphological signs of oncogenesis can be linked to multiscale collective effects in molecular and cell ensembles. It was shown that nonlinear behavior of biological systems can be associated with the generation of characteristic collective modes representing the open states in molecular and cell organization as the mechanism of the coherent expression dynamics. The mechanical DNA model is developed to study the nonlinear dynamics of the helicoidal geometry DNA molecule. To construct the model of DNA the Peyrard–Bishop–Barbi approach has been applied. The analytical small localized solutions as the discrete breather and the antikink have been obtained by multiple scale expansion method for multicomponent lattices. The set of collective open states (breathers) in the molecular ensembles provides the collective expression dynamics to attract cells toward a few preferred global states. This result allows the formulation of the experimental strategy to analyze the qualitative changes in cell dynamics induced by mentioned collective modes. The biomechanical changes have been shown experimentally using the original data of Coherent Phase Microscopy analyzing the time series of phase thickness fluctuations. Study of the mechanical aspects of the behavior of single cells is a prerequisite for the understanding of cell functions in the case of qualitative changes in diseases affecting the properties of cells and tissues morphology to develop diagnostic and treatment design methodology.
@article{MBB_2019_14_1_a12,
     author = {A. S. Nikityuk and E. A. Korznikova and S. V. Dmitriev and O. B. Neumark},
     title = {DNA breathers and cell dynamics},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {137--149},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a12/}
}
TY  - JOUR
AU  - A. S. Nikityuk
AU  - E. A. Korznikova
AU  - S. V. Dmitriev
AU  - O. B. Neumark
TI  - DNA breathers and cell dynamics
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 137
EP  - 149
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a12/
LA  - en
ID  - MBB_2019_14_1_a12
ER  - 
%0 Journal Article
%A A. S. Nikityuk
%A E. A. Korznikova
%A S. V. Dmitriev
%A O. B. Neumark
%T DNA breathers and cell dynamics
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 137-149
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a12/
%G en
%F MBB_2019_14_1_a12
A. S. Nikityuk; E. A. Korznikova; S. V. Dmitriev; O. B. Neumark. DNA breathers and cell dynamics. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 137-149. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a12/

[1] L. V. Yakushevich, Nonlinear physics of DNA, WILEY-VCH Verlag GmbH Co. KGaA, Weinheim, 2004, 205 pp.

[2] O. B. Naimark, “Structural-scaling transitions and localized distortion modes in the DNA double helix”, Phys. Mesomech., 10:1-2 (2007), 33–45 | DOI

[3] T. Dauxois, M. Peyrard, A. R. Bishop, “Entropy-driven DNA denaturation”, Phys. Rev. E, 47:1 (1993), 44–47 | DOI | MR

[4] A. Campa, “Bubble propagation in a helicoidal molecular chain”, Phys. Rev. E, 63:2 (2001), 021901 | DOI

[5] A. Alvarez, F. R. Romero, J. F. R. Archilla, J. Cuevas, P. V. Larsen, “Breather tapping and breather transmission in a DNA model with an interface”, Eur. Phys. J. B, 51:1 (2006), 119–130 | DOI

[6] L. V. Yakushevich, A. A. Grinevich, A. A. Ryasik, “Simulation of a kink movement in homogeneous and heterogeneous DNA sequences taking into account the dissipation”, Russ. J. Numer. Anal. Math. Modelling, 29:3 (2014), 197–204 | DOI | MR | Zbl

[7] S. Zdravkovic, M. Sataric, J. Tuszynskic, “Biophysical Implications of the Peyrard-Bishop-Dauxois Model of DNA Dynamics”, J. Comput. Theor. Nanosci., 1:2 (2004), 169–179 | DOI | MR

[8] V. D. Lakhno, “DNA nanobioelectronics”, International Journal of Quantum Chemistry, 108:11 (2008), 1970–1981 | DOI

[9] V. D. Lakhno, “Soliton-like solutions and electron transfer in DNA”, Journal of Biological Physics, 26:2 (2000), 133–147 | DOI

[10] V. D. Lakhno, N. S. Fialko, “Hole mobility in a homogeneous nucleotide chain”, JETP Letters, 78:5 (2003), 336–338 | DOI

[11] A. P. Chetverikov, K. S. Sergeev, V. D. Lakhno, “Trapping and transport of charges in DNA by mobile discrete breathers”, Mathematical Biology and Bioinformatics, 13:1 (2018), 1–12 | DOI | MR

[12] V. D. Lakhno, A. P. Chetverikov, “Excitation of bubbles and breathers in DNA and their interaction with the charge carriers”, Mathematical Biology and Bioinformatics, 9:1 (2014), 4–19 | DOI

[13] A. P. Chetverikov, K. S. Sergeev, V. D. Lakhno, “The excitation of mobile discrete breathers in DNA by initial disturbance of displacements or velocities of a few of adjacent nucleotide pairs”, Mathematical Biology and Bioinformatics, 12:2 (2017), 375–384 | DOI

[14] A. S. Shigaev, O. A. Ponomarev, V. D. Lakhno, “Theoretical and experimental investigations of DNA open states”, Mathematical Biology and Bioinformatics, 13, Suppl. (2018), t162–t267 | DOI

[15] M. G. Velarde, A. P. Chetverikov, W. Ebeling, S. V. Dmitriev, V. D. Lakhno, “From solitons to discrete breathers”, European Physical Journal B, 89:10 (2016), 233 | DOI | MR

[16] M. G. Velarde, A. P. Chetverikov, W. Ebeling, S. V. Dmitriev, V. D. Lakhno, “Wave motions along lattices with nonlinear on-site and inter-site potentials. Cooperation and/or competition leading to lattice Solitons and/or discrete breathers”, Proceedings of the Estonian Academy of Sciences, 64:3 (2015), 396–404 | DOI | MR

[17] S. V. Dmitriev, E. A. Korznikova, Y. A. Baimova, M. G. Velarde, “Discrete breathers in crystals”, Physics-Uspekhi, 59:5 (2016), 446–461 | DOI

[18] A. Sulaiman, F. P. Zen, H. Alatas, L. T. Handoko, “Dynamics of DNA breathing in the Peyrard-Bishop model with damping and external force”, Physica D, 241 (2012), 1640–1647 | DOI | Zbl

[19] A. N. Ikot, L. E. Akpabio, I. O. Akpan, M. I. Umo, E. E. Ituen, “Quantum damped mechanical oscillator”, International Journal of Optics, 1:5-6 (2010), 1–6 | DOI

[20] M. Peyrard, “Nonlinear dynamics and statistical physics of DNA”, Nonlinearity, 17:2 (2004), 1–40 | DOI | MR

[21] M. Barbi, S. Cocco, M. Peyrard, “Helicoidal model for DNA opening”, Physics Letters A, 253 (1999), 358–369 | DOI

[22] M. Barbi, S. Lepri, M. Peyrard, N. Theodorakopoulos, “Thermal denaturation of a helicoidal DNA model”, Physical Review E, 68:6 (2003), 061909 | DOI

[23] J. Argwal, D. Henning, “Breather solutions of a nonlinear DNA model including a longitudinal degree of freedom”, Physica A, 323 (2003), 519–533 | DOI | MR

[24] R. R. Klevecz, J. Bolen, G. Forrest, D. B. Murray, “A genomewide oscillation in transcription gates DNA replication and cell cycle”, Proc. Natl. Acad. Sci, 101:5 (2004), 1200–1205 | DOI

[25] K. Yoshikawa, “Field hypothesis on the self-regulation of gene expression”, J. Biol. Phys., 28:4 (2002), 701–712 | DOI

[26] S. Huang, G. Eishier, Y. Bar-Yam, D. E. Ingber, “Cell Fates as High-Dimensional Attractor States of a Complex Gene Regulatory Network”, Phys. Rev. Lett., 94 (2005), 128701–128705 | DOI

[27] A. Goldberg, C. D. Allis, E. Bernstein, “Epigenetics: A Landscape Takes Shape”, Cell, 128:4 (2007), 635–638 | DOI

[28] M. Tsuchiya, A. Giuliani, M. Hashimoto, J. Erenpreisa, K. Yoshikawa, “Emergent Self-Organized Criticality in gene expression dynamics: Temporal development of global phase transition revealed in a cancer cell line”, PLOS ONE, 11 (2015), 1–33

[29] M. Tsuchiya, M. Hashimoto, Y. Takenaka, I. N. Motoike, K. Yoshikawa, “Global genetic response in a cancer cell: Self-organized coherent expression dynamics”, PLOS ONE, 9 (2014), 1–33

[30] V. P. Tychinsky, A. V. Kretushev, I. V. Klemyashov, T. V. Vyshenskaya, A. A. Shtil, O. V. Zatsepina, “Coherent phase microscopy, a novel approach to study the physiological state of the nucleolus”, Doklady Biochemistry and Biophysics, 405 (2005), 432–436 | DOI

[31] E. Lyapunova, A. Nikituk, Y. Bayandin, O. Naimark, C. Rianna, M. Radmacher, “Passive microrheology of normal and cancer cells after ML7 treatment by atomic force microscopy”, International Conference on Physics of Cancer: Interdisciplinary Problems and Clinical Applications (PC'16), AIP Conference Proceedings, 1760, no. 1, 2016, 020046 | DOI

[32] G. Popescu, Quantitative Phase Imaging of Cells and Tissues, McGraw-Hill, 2011, 362 pp.

[33] C. Martinez-Torres, L. Berguiga, L. Streppa, E. Boyer-Provera, L. Schaeffer, J. Elezgaray, A. Arneodo, F. Argoul, “Diffraction phase microscopy: retrieving phase contours on living cells with a wavelet-based space-scale analysis”, Journal of Biomedical Optics, 19:3 (2014), 8–19 | DOI

[34] E. Gerasimova, B. Audit, S.-G. Roux, A. Khalil, F. Argoul, O. Naimark, A. Arneodo, “Multifractal analysis of dynamic infrared imaging of breast cancer”, Europhysics Letters, 104 (2013), 64001 | DOI

[35] E. Gerasimova, B. Audit, S.-G. Roux, A. Khalil, O. Gileva, F. Argoul, O. Naimark, A. Arneodo, “Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis”, Frontiers in Physiology, 5 (2014), 176 | DOI