Numerical simulation of small radius polaron in a chain with random perturbations
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 126-136

Voir la notice de l'article provenant de la source Math-Net.Ru

In a number of publications about biophysical experiments on the transfer of a charge to DNA, it is assumed that charge is transferred via a super-exchange mechanism at short distances of 2–3 nucleotide pairs, and in long fragments the charge forms a polaron that moves along the chain under the influence of temperature fluctuations. Using numerical simutation, we investigate the dynamics of a polaron of small radius in a homogeneous chain plaiced in constant electric field at a finite temperature. It is shown that there is no charge transfer by the polaron mechanism, i.e. there is no sequential movement of the polaron from site to site, in chains with parameter valuess corresponding to homogeneous adenine DNA fragments. The “polaron or delocalized state” check is based on the control of the average characteristics: the delocalization parameter, the position of the maximum probability, and the maximum modulus displacement. The dynamics of individual trajectories is also considered. Without electric field, there is a mode of switching between the states “stationary polaron – delocalized state”, and a new polaron arises at a random site of the chain. In the chain placed in field with constant intensity, the averaged charge moves in the direction of the field, but the transfer occurs in a delocalized state.
@article{MBB_2019_14_1_a11,
     author = {N. S. Fialko and V. D. Lakhno},
     title = {Numerical simulation of small radius polaron in a chain with random perturbations},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {126--136},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a11/}
}
TY  - JOUR
AU  - N. S. Fialko
AU  - V. D. Lakhno
TI  - Numerical simulation of small radius polaron in a chain with random perturbations
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 126
EP  - 136
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a11/
LA  - ru
ID  - MBB_2019_14_1_a11
ER  - 
%0 Journal Article
%A N. S. Fialko
%A V. D. Lakhno
%T Numerical simulation of small radius polaron in a chain with random perturbations
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 126-136
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a11/
%G ru
%F MBB_2019_14_1_a11
N. S. Fialko; V. D. Lakhno. Numerical simulation of small radius polaron in a chain with random perturbations. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 126-136. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a11/

[1] A. Offenhausser, R. Rinaldi (eds.), Nanobioelectronics — for Electronics, Biology, and Medicine, Springer, New York, 2009, 337 pp. | DOI | DOI

[2] V. D. Lakhno, “DNA nanobioelectronics”, International Journal of Quantum Chemistry, 108:11 (2008), 1970–1981 | DOI | DOI

[3] T. Chakraborty (ed.), Charge Migration in DNA. Perspectives from Physics, Chemistry, and Biology, Springer, Berlin, 2007, 288 pp. | DOI | DOI

[4] G. B. Schuster, Long-Range Charge Transfer in DNA II, Topics in Current Chemistry, 237, Springer, 2004, 245 pp.

[5] E. B. Starikov, S. Tanaka, J. P. Lewis (eds.), Modern Methods for Theoretical Physical Chemistry of Biopolymers, Elsevier Scientific, Amsterdam, 2006, 461 pp.

[6] S. S. Alexandre, E. Artacho, J. Soler, H. Chacham, “Small polarons in dry DNA”, Physical Review Letters, 91 (2003), 108105 | DOI | DOI

[7] Y. Wang, L. Fu, K.-L. Wang, “Extended Holstein small polaron model for charge transfer in dry DNA”, Biophysical Chemistry, 119 (2006), 107–114 | DOI | DOI

[8] E. Starikov, “Electron-phonon coupling in DNA: A systematic study”, Philosophical Magazine, 85 (2005), 3435–3462 | DOI | DOI

[9] N. Fialko, V. Lakhno, “Nonlinear dynamics of excitations in DNA”, Physical Letters A, 278 (2000), 108–112 | DOI | DOI

[10] V. D. Lakhno, “Davydov' solitons in DNA”, Self-Organization of Molecular Systems From Molecules and Clusters to Nanotubes and Proteins, eds. N. Russo, V. Y. Antonchenko, E. S. Kryachko, Springer, Netherlands, 2009, 255–273 | DOI | MR | DOI | MR

[11] V. D. Lakhno, N. S. Fialko, “Polyaron v molekulyarnykh tsepochkakh s dispersiei”, Fizika i khimiya stekla, 37:1 (2011), 71–82 | DOI | MR | DOI | MR

[12] F. C. Grozema, Y. A. Berlin, L. D. A. Siebbeles, “Sequence-dependent charge transfer in donor-DNA-acceptor systems: A theoretical study”, International Journal of Quantum Chemistry, 75 (1999), 1009–1016 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | DOI

[13] J. Jortner, M. Bixon, T. Langenbacher, M. E. Michel-Beyerle, “Charge transfer, transport in DNA”, PNAS USA, 95 (1998), 12759–12765 | DOI | DOI

[14] J. Jortner, M. Bixon, A. A. Voityuk, N. Roesh, “Superexchange Mediated Charge Hopping in DNA”, J. Phys. Chem. A, 106:33 (2002), 7599–7606 | DOI | DOI

[15] D. M. Basko, E. M. Conwell, “Effect of Solvation on Hole Motion in DNA”, Phys. Rev. Lett., 88:9 (2002), 098102 | DOI | DOI

[16] J. C. Genereux, J. K. Barton, “Mechanisms for DNA Charge Transport”, Chem. Rev., 110:3 (2010), 1642–1662 | DOI | DOI

[17] T. Holstein, “Studies of polaron motion: Part I. The molecular-crystal model”, Annals of Physics, 8:3 (1959), 325–342 | DOI | Zbl | DOI | Zbl

[18] P. S. Lomdahl, W. C. Kerr, Do Davydov solitons exost at 300K?, Phys. Rev. Lett., 55:11 (1985), 1235–1238 | DOI | DOI

[19] E. Helfand, “Brownian dynamics study of transitions in a polymer chain of bistable oscillators”, J. Chem. Phys, 69:3 (1978), 1010–1018 | DOI | DOI

[20] H. S. Greenside, E. Helfand, “Numerical integration of stochastic differential equations-II”, Bell System Technical Journal, 60 (1981), 1927–1940 | DOI | MR | Zbl | DOI | MR | Zbl

[21] A. A. Voityuk, N. Rosch, M. Bixon, J. Jortner, “Electronic Coupling for Charge Transfer and Transport in DNA”, J. Phys. Chem. B, 104:41 (2000), 9740–9745 | DOI | DOI

[22] F. D. Lewis, Ya. Wu, “Dynamics of superexchange photoinduced electron transfer in duplex DNA”, J. Photochem. Photobiol., 2:1 (2001), 1–16 | DOI | DOI

[23] N. S. Fialko, E. V. Sobolev, V. D. Lakhno, “O raschetakh termodinamicheskikh velichin v modeli Kholsteina dlya odnorodnykh polinukleotidov”, ZhETF, 151:4 (2017), 744–751 | DOI | DOI

[24] T. Holstein, “Studies of polaron motion: Part II. The “small” polaron”, Annals of Physics, 8:3 (1959), 343–389 | DOI | Zbl | DOI | Zbl

[25] V. D. Lakhno, N. S. Fialko, “O dinamike polyarona v klassicheskoi tsepochke s konechnoi temperaturoi”, ZhETF, 147 (2015), 142–148 | DOI | DOI

[26] A. P. Chetverikov, W. Ebeling, M. G. Velarde, “Local electron distributions and diffusion in anharmonic lattices mediated by thermally excited solitons”, Eur. Phys. J. B, 70 (2009), 217–227 | DOI | DOI

[27] A. P. Chetverikov, W. Ebeling, M. G. Velarde, “On the temperature dependence of fast electron transport in crystal lattices”, Eur. Phys. J. B, 88 (2015), 202–207 | DOI | DOI

[28] S. Chandrasekar, Stokhasticheskie problemy v fizike i astronomii, ed. N. N. Bogolyubov, Gosudarstvennoe izdatelstvo inostrannoi literatury, M., 1947, 168 pp.

[29] K. H. Yoo, D. H. Ha, J. O. Lee, J. W. Park, Kim Jinhee, J. J. Kim, H. Y. Lee, T. Kawai, H. Y. Choi, “Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules”, Physical Review Letters, 87:19 (2001), 198102 | DOI | DOI

[30] A. Voityuk, “Charge transfer in DNA: Hole charge is confined to a single base pair due to solvation effects”, J. Chem. Phys., 122 (2005), 204904 | DOI | DOI

[31] N. Fialko, M. Pyatkov, V. Lakhno, “On the Thermodynamic Equilibrium Distribution of a Charge in a Homogeneous Chain with a Defect”, EPJ Web of Conferences, 173 (2018), 06004 | DOI | DOI