Chiral peculiar properties of self-organization of diphenylalanine peptide nanotubes: modeling of structure and properties
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 94-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure and properties of diphenylalanine peptide nanotubes based on phenylalanine were investigated by various molecular modeling methods. The main approaches were semi-empirical quantum-chemical methods (PM3 and AM1), and molecular mechanical ones. Both the model structures and the structures extracted from their experimental crystallographic databases obtained by X-ray methods were examined. A comparison of optimized model structures and structures obtained by naturally-occurring self-assembly showed their important differences depending on D- and L-chirality. In both the cases, the effect of chirality on the results of self-assembly of diphenylalanine peptide nanotubes was established: peptide nanotubes based on the D-diphenylalanine (D-FF) has high condensation energy E0 in transverse direction and forms thicker and shorter peptide nanotubes bundles, than that based on L-diphenylalanine (L-FF). A topological difference was established: model peptide nanotubes were optimized into structures consisting of rings, while naturally self-assembled peptide nanotubes consisted of helical coils. The latter were different for the original L-FF and D-FF. They formed helix structures in which the chirality sign changes as the level of the macromolecule hierarchy raises. Total energy of the optimal distances between two units are deeper for L-FF (–1.014 eV) then for D-FF (–0.607 eV) for ring models, while for helix coil are approximately the same and have for L-FF (–6.18 eV) and for D-FF (–6.22 eV) by PM3 method; for molecular mechanical methods energy changes are of the order of 2–3 eV for both the cases. A topological transition between a ring and a helix coil of peptide nanotube structures is discussed: self-assembled natural helix structures are more stable and favourable, they have lower energy in optimal configuration as compared with ring models by a value of the order of 1 eV for molecular mechanical methods and 5 eV for PM3 method.
@article{MBB_2019_14_1_a10,
     author = {V. S. Bystrov and P. S. Zelenovskiy and A. S. Nuraeva and S. Kopyl and O. A. Zhulyabina and V. A. Tverdislov},
     title = {Chiral peculiar properties of self-organization of diphenylalanine peptide nanotubes: modeling of structure and properties},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {94--125},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a10/}
}
TY  - JOUR
AU  - V. S. Bystrov
AU  - P. S. Zelenovskiy
AU  - A. S. Nuraeva
AU  - S. Kopyl
AU  - O. A. Zhulyabina
AU  - V. A. Tverdislov
TI  - Chiral peculiar properties of self-organization of diphenylalanine peptide nanotubes: modeling of structure and properties
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 94
EP  - 125
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a10/
LA  - en
ID  - MBB_2019_14_1_a10
ER  - 
%0 Journal Article
%A V. S. Bystrov
%A P. S. Zelenovskiy
%A A. S. Nuraeva
%A S. Kopyl
%A O. A. Zhulyabina
%A V. A. Tverdislov
%T Chiral peculiar properties of self-organization of diphenylalanine peptide nanotubes: modeling of structure and properties
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 94-125
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a10/
%G en
%F MBB_2019_14_1_a10
V. S. Bystrov; P. S. Zelenovskiy; A. S. Nuraeva; S. Kopyl; O. A. Zhulyabina; V. A. Tverdislov. Chiral peculiar properties of self-organization of diphenylalanine peptide nanotubes: modeling of structure and properties. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 94-125. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a10/

[1] M. Calvin, Chemical evolution. Molecular evolution, towards the origin of living system on the Earth and elsewhere, AT the Clarendon Press, Oxford, 1969

[2] A. L. Lehninger, Biochemistry. The molecular basis of cell structure and function, Worth Publishers Inc., New York, 1972

[3] A. R. Rees, M. J. E. Sternberg, From cells to atoms: an illustrated introduction to molecular biology, Blackwell Scientific Publications, 1984

[4] S. K. Aryaa, P. R. Solankia, M. Dattab, B. D. Malhotra, “Recent advances in self-assembled monolayers based biomolecular electronic devices”, J. Biosensors and Bioelectronics, 24:9 (2009), 2810–2817 | DOI

[5] A. C. Mendes, E. T. Baran, R. L. Reis, H. S. Azevedo, “Self-assembly in nature: using the principles of nature to create complex nanobiomaterials”, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 5:6 (2013), 582–612 | DOI

[6] M. Orsi, “Molecular simulation of self-assembly”, Self-assembling Biomaterials. Molecular Design, Characterization and Application in Biology and Medicine, Series in Biomaterials, 1st Edition, eds. Azevedo H. S., da Silva R. M. P., Elsevier Ltd. Woodhead Publishing, 2018, 305–318

[7] O. S. Lee, S. I. Stupp, G. C. Schatz, “Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers”, J. Am. Chem. Soc., 133:10 (2011), 3677–83 | DOI

[8] W. J. Frith, “Self-assembly of small peptide amphiphiles, the structures formed and their applications. (A foods and home and personal care perspective)”, Philos. Trans. A, 374:2072 (2016), 2015–0138 | DOI

[9] J. Van der Lit, J. L. Marsman, R. S. Koster, P. H. Jacobse, S. A. den Hartog, D. Vanmaekelbergh, R. J. M. Klein Gebbink, L. Filion, I. Ingmar Swart, “Modeling the Self-Assembly of Organic Molecules in 2D Molecular Layers with Different Structures”, J. Phys. Chem., 120:1 (2016), 318–323 | DOI

[10] C. J. Brandon, B. P. Martin, K. J. McGee, J. J. P. Stewart, S. B. Braun-Sand, “An approach to creating a more realistic working model from a protein data bank entry”, J. Mol. Mod., 21 (2015), 1–11 | DOI

[11] M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee, N. Hazanovich, “Self assembling organic nanotubes based on cyclic peptide architecture”, Nature, 366 (1993), 324–327 | DOI

[12] C. H. Görbitz, “Nanotube formation by hydrophobic dipeptides”, Chem. Eur. J., 7 (2001), 5153–5159 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[13] V. L. Sedman, L. Adler-Abramovich, S. Allen, E. Gazit, S. J. B. Tendler, “Direct observation of the release of phenylalanine from diphenilalanine nanotubes”, J. Am. Chem. Soc., 128 (2006), 6903–6908 | DOI

[14] S. Scanlon, A. Aggeli, “Self-assembling peptide nanotubes”, Nano Today, 3 (2008), 22–30 | DOI

[15] J. Shklovsky, P. Beker, N. Amdursky, E. Gazit, G. Rosenman, “Bioinspired peptide nanotubes: deposition technology and physical properties”, Mater. Sci. Eng. B, 169 (2010), 62–66 | DOI

[16] V. S. Bystrov, I. Bdikin, A. Heredia, R. C. Pullar, E. Mishina, A. Sigov, A. L. Kholkin, “Piezoelectricity and Ferroelectricity in biomaterials from proteins to self-assembled peptide nanotubes”, Piezoelectric nanomaterials for biomedical applications, eds. G. Ciofani, A. Menciassi, Springer, Berlin, 2012, 187–211 | DOI

[17] V. S. Bystrov, E. Seyedhosseini, S. Kopyl, I. K. Bdikin, A. L. Kholkin, “Piezoelectricity and ferroelectricity in biomaterials: molecular modeling and piezoresponse force microscopy measurements”, J. Appl. Phys., 116:6 (2014), 066803 | DOI

[18] V. S. Bystrov, Computer simulation nanostructures: bioferroelectric peptide nanotubes, LAP Lambert Academic Press, Saarbrucken, 2016

[19] V. S. Bystrov, E. V. Paramonova, I. K. Bdikin, S. Kopyl, A. Heredia, R. C. Pullar, A. L. Kholkin, “Bioferroelectricity: diphenylalanine peptide nanotubes computational modeling and ferroelectric properties at the nanoscale”, Ferroelectrics, 440:1 (2012), 3–24 | DOI

[20] A. Nuraeva, S. Vasilev, D. Vasileva, P. Zelenovskiy, D. Chezganov, A. Esin, S. Kopyl, K. Romanyuk, V. Ya. Shur, A. L. Kholkin, “Evaporation-Driven Crystallization of Diphenylalanine Microtubes for Microelectronic Applications”, Cryst. Growth Des., 16 (2016), 1472–1479 | DOI

[21] H. Weyl, Symmetry, Princeton University Press, New Jersey, Princeton, 1952 | MR | Zbl

[22] G. Kane, Supersymmetry and Beyond: From the Higgs Boson to the New Physics, Basic Books, 2013, 216 pp.

[23] R. Feynman, The Character of Physical Law, 1965, 173 pp.

[24] B. Holmstedt, H. Frank, B. Testa (eds.), Chirality, Biological Activity, Liss, New York, 1990

[25] McNaught A. D., Wilkinson A. (Compiled), IUPAC. Compendium of Chemical Terminology, Blackwell Scientific Publications, Oxford, 1997

[26] R. M. Capito, H. S. Azevedo, Y. S. Velichko, A. Mata, S. I. Stupp, “Self-assembly of large and small molecules into hierarchically ordered sacs and membranes”, Science, 319:5871 (2008), 1812–1816 | DOI

[27] E. Yashima, N. Ousaka, D. Taura, K. Shimomura, T. Ikai, K. Maeda, “Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions”, Chem. Rev., 116:22 (2016), 13752–13990 | DOI

[28] V. A. Tverdislov, “Chirality as a primary switch of hierarchical levels in molecular biological systems”, Biophysics, 58:1 (2013), 128–132 | DOI

[29] E. V. Malyshko, V. A. Tverdislov, IOP. J. Phys. Conf. Series, 741 (2016), 012065 | DOI

[30] V. A. Tverdislov, E. V. Malyshko, S. A. Il'chenko, O. A. Zhulyabina, L. V. Yakovenko, “A periodic system of chiral structures in molecular biology”, Biophysics, 62:3 (2017), 331–341 | DOI

[31] Ch. R. Cantor, P. R. Schimel, Biophysical Chemistry, v. 3, The Behavior of Biological Molecules, W.H. Freeman and Company, San Francisco, 1980

[32] E. L. Eliel, S. Wilen, M. Doyle, Basic Organic Stereochemistry, Wiley-Interscience, New York, 2001

[33] U. Müller, Symmetry Relationships between Crystal Structures. Applications of Crystallographic Group Theory in Crystal Chemistry, University Press, Oxford, 2013 | MR

[34] H. Lam, D. C. Oh, F. Cava, C. N. Takacs, J. Clardy, M. A. de Pedro, M. K. Waldor, “D-amino acids govern stationary phase cell wall remodeling in bacteria”, Science, 325:5947 (2009), 1552–1555 | DOI

[35] V. I. Tishkov, “The Coenzyme Regeneration for Biosynthesis of Chiral Compounds Using Dehydrogenases”, Moscow University Chemistry Bulletin, 43:6 (2002), 381–388 (in Russ.)

[36] S. F. Mason, “Origins of biomolecular handedness”, Nature, 311 (1984), 19–23 | DOI

[37] S. R. Blanke, “Expanding Functionality within the Looking-Glass Universe”, Science, 325 (2009), 1505–1506 | DOI

[38] T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. J. Katz, A. Persoons, “Strong Enhancement of Nonlinear Optical Properties Through Supramolecular Chirality”, Science, 282 (1998), 913–915 | DOI

[39] R. Naaman, D. H. Waldeck, “Chiral-Induced Spin Selectivity Effect”, J. Phys. Chem. Lett., 3:16 (2012), 2178–2187 | DOI

[40] R. Naaman, D. H. Waldeck, “Spintronics and Chirality: Spin Selectivity in Electron Transport Through Chiral Molecules”, Annu. Rev. Phys. Chem., 66 (2015), 263–81 | DOI

[41] J. M. Dreiling, T. J. Gay, “Chirally Sensitive Electron-Induced Molecular Breakup and the Vester-Ulbricht Hypothesis”, Phys. Rev. Lett., 113 (2014), 118103 | DOI

[42] T. L.V. Ulbricht, F. Vester, “Attempts to induce optical activity with polarized b-radiation”, Tetrahedron, 18:5 (1962), 629–637 | DOI

[43] A. A. Sokolov, I. M. Ternov, “On Polarization and Spin Effects in Theory of Synchrotron Radiation”, Sov. Phys. Dokl., 8 (1964), 1203

[44] I. M. Ternov, V. G. Bagrov, R. A. Rzaev, Izvestiia VUZov. Fizika (Russian Physics Journal), 5 (1963), 127–139 (in Russ.)

[45] M. Kettner, B. Göhler, H. Zacharias, D. Mishra, V. Kiran, R. Naaman, C. Fontanesi, D. H. Waldeck, S. Sȩk, J. Pawłowski, J. Juhaniewicz, “Spin Filtering in Electron Transport Through Chiral Oligopeptides”, J. Phys. Chem, 119 (2015), 14542–14547 | DOI

[46] B. Gohler, V. Hamelbeck, T. Z. Markus, M. Kettner, G. F. Hanne, Z. Vager, R. Naaman, H. Zacharias, “Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA”, Science, 331 (2011), 894–897 | DOI | Zbl

[47] K. Banerjee-Ghosh, O. B. Dor, F. Tassinari, E. Capua, S. Yochelis, A. Capua, S. H. Yang, S. S.P. Parkin, S. Sarkar, L. Kronik, L. T. Baczewski, R. Naaman, Y. Paltiel, “Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates”, Science, 360:6395 (2018), 1331–1334 | DOI

[48] O. A. Zhuliabina, E. V. Malyshko, S. A. Il'chenko, V. A. Tverdislov, Bulletin of science and education, 4:6 (2015), 24–25 (in Russ.)

[49] E. V. Malyshko, V. A. Tverdislov, “Physical Principles of Discrete Hierarchies Formation in Protein Macromolecules”, IOP Conf. Series: Journal of Physics: Conf. Serie, 917 (2017), 42025 | DOI

[50] E. V. Malyshko, Chiral dualism as the physical basis of stratification in protein structural hierarchies, Ph. D. Thesis, M., 2018, 146 pp. (in Russ.)

[51] D. E. Kharzeev, “The Chiral Magnetic Effect and Anomaly-Induced Transport”, Prog. Part. Nucl. Phys., 75 (2014), 133–151 | DOI

[52] Yu. Hirono, D. E. Kharzeev, A. V. Sadofyev, “Dynamics of vortices in chiral media: the chiral propulsion effect”, Phys. Rev. Lett., 121:14 (2018), 142301 | DOI | MR

[53] S. Kaushik, D. E. Kharzeev, “Quantum Oscillations in the Chiral Magnetic Conductivity”, Phys. Rev. B, 95:23 (2017), 235136 | DOI

[54] A. Cortijo, D. Kharzeev, K. Landsteiner, M. A. H. Vozmediano, “Strain induced Chiral Magnetic Effect in Weyl semimetals”, Phys. Rev. B, 94:24 (2016), 24140 | DOI

[55] P. Yin, Z. M. Zhang, H. Lv, T. Li, F. Haso, L. Hu, B. Zhang, J. Bacsa, Y. Wei, Y. Gao, Y. Hou, Y. G. Li, C. L. Hill, E. B. Wang, T. Liu, “Chiral recognition and selection during the self-assembly process of protein-mimic macroanions”, Nature Comm., 6 (2015), 6475 | DOI

[56] M. Kanduc, J. Dobnikar, R. Podgornik, “Counterion-mediated electrostatic interactions between helical molecules”, Soft Matter., 5 (2009), 868–877 | DOI

[57] V. S. Bystrov, B. Singh, I. K. Bdikin, V. A. Tverdislov, O. A. Zhulyabina, “Ferroelectric physical properties of various dipeptide nanotubes”, International Conference on Nanomaterials Science and Mechanical Engineering, Book of Abstracts (University of Aveiro, Portugal, July 16-18, 2018), eds. Bdikin I., Neto V. F. S., UA Editora, Universidade de Aveiro, Aveiro, 2018, 62

[58] I. Bdikin, B. Singh, V. S. Bystrov, “Local piezoelectricity in amino acids microcrystals”, International Conference on Nanomaterials Science and Mechanical Engineering, Book of Abstracts (University of Aveiro, Portugal, July 16-18, 2018), eds. Bdikin I., Neto V. F. S., UA Editora, Universidade de Aveiro, Aveiro, 2018, 78

[59] S. Kopyl, V. S. Bystrov, A. Nuraeva, P. Zelenovskiy, S. Vasilev, S. G. Arkhipov, V. Ya. Shur, A. L. Kholkin, “Diphenylalanine Peptide Nanotubes with Different Chirality: Structures, Properties, and Applications”, International Conference on Nanomaterials Science and Mechanical Engineering, Book of Abstracts (University of Aveiro, Portugal, July 16-18, 2018), eds. Bdikin I., Neto V. F. S., UA Editora, Universidade de Aveiro, Aveiro, 2018, 41

[60] V. S. Bystrov, I. K. Bdikin, V. A. Tverdislov, O. A. Zhulyabina, P. S. Zelenovskiy, S. A. Kopyl, “Physical ferroelectric and chiral properties of various dipeptide nanotubes and nanostructures”, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, v. 7, ed. V.D. Lakhno, IMPB RAS, Pushchino, 2018, e9 | DOI

[61] M. Reches, E. Gazit, “Controlled patterning of aligned self-assembled peptide nanotubes”, Nature Nanotech, 1 (2006), 195–200 | DOI

[62] L. Adler-Abramovich, D. Aronov, P. Beker, M. Yevnin, S. Stempler, L. Buzhansky, G. Rosenman, E. Gazit, “Self-assembled arrays of peptide nanotubes byvapour deposition”, Nature Nanotechnology, 4 (2009), 849–854 | DOI

[63] L. Adler-Abramovich, E. Gazit, “The physical properties of supramolecular peptide assemblies: from building block association to technological application”, Chem. Soc. Rev., 43 (2014), 6881–6893 | DOI

[64] N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, G. Rozenman, “Blue luminescence based on quantum confinement at peptide nanotubes”, Nano Letters, 9:9 (2009), 3111–3115 | DOI

[65] N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, I. Rousso, “Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures”, Nano Lett., 5 (2005), 1343–1346 | DOI

[66] P. Zelenovskiy, I. Kornev, S. Vasilev, A. Kholkin, “On the origin of the great rigidity of self-assembled diphenylalanine nanotubes”, Phys. Chem. Chem. Phys., 18:43 (2016), 29681–29685 | DOI

[67] P. S. Zelenovskiy, A. O. Davydov, A. S. Krylov, A. L. Kholkin, “Raman study of structural transformations in self-assembled diphenylalanine nanotubes at elevated temperatures”, J. Raman Spectrosc., 48:11 (2017), 1401–1405 | DOI

[68] P. S. Zelenovskiy, A. S. Nuraeva, S. Kopyl, S. G. Arkhipov, S. G. Vasilev, V. S. Bystrov, V. Svitlyk, V. Ya. Shur, L. Mafra, A. L. Kholkin, “Chirality-dependent growth of self-assembled diphenylalanine microtubes”, Phys. Chem. Chem. Phys., 2019

[69] The Cambridge Crystallographic Data Centre (CCDC), (accessed 23.01.2019) https://www.ccdc.cam.ac.uk/

[70] V. S. Bystrov, S. A. Kopyl, P. Zelenovskiy, O. A. Zhulyabina, V. A. Tverdislov, F. Salehli, N. E. Ghermani, V. Ya. Shur, A. L. Kholkin, “Investigation of physical properties of diphenylalanine peptide nanotubes having different chiralities and embedded water molecules”, Ferroelectrics, 525 (2018), 168–177 | DOI

[71] HyperChem Professional 8.0, (accessed 20.02.2019) http://www.hyper.com/?tabid=360

[72] J. J. P. Stewart, “Optimization of Parameters for Semiempirical Methods. I. Method”, J. Comput. Chem., 10 (1989), 209 | DOI

[73] J. J. P. Stewart, “Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements”, J. Mol. Mod., 13:12 (2007), 1173–1213 | DOI

[74] A. Szabo, N. Ostlund, Modern Quantum Chemistry, Macmillan, New York, 1985

[75] T. A. Clark, Handbook of Computational Chemistry, John Wiley and Sons, New York, 1985

[76] W. Kohn, L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev., 140 (1965), A1133 | DOI | MR

[77] G. Kresse, J. Hafner, “Ab initio”, Phys. Rev. B, 49 (1994), 14251–14269 | DOI

[78] G. Kresse, J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set”, Phys. Rev. B, 54 (1996), 11169–11186 | DOI

[79] G. Kresse, D. Joubert, “From ultrasoft pseudopotentials to the projector augmented wave method”, Physical Review B, 59 (1999), 1758–1775 | DOI

[80] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Phys. Rev. Lett., 77 (1996), 3865–3868 | DOI

[81] C. Lee, W. Yang, R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Phys. Rev. B, 37 (1988), 785–789 | DOI

[82] A. D. Becke, “A new mixing of Hartree-Fock and local density-functional theories”, J. Chem. Phys., 98 (1993), 1372–1377 | DOI

[83] J. A. Pople, D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York, 1970

[84] R. Krishnan, J. S. Kinkley, R. Seeger, J. A. Pople, “Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions”, J. Chem. Phys, 72 (1980), 650–654 | DOI

[85] A. D. McLean, G. S. Chandler, “Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18”, J. Chem. Phys., 72 (1980), 5639–5648 | DOI

[86] Ch. Møller, M. Plesset, “Note on an Approximation Treatment for Many-Electron Systems”, Phys. Rev., 46:7 (1934), 618–622 | DOI

[87] M. Head-Gordon, J. A. Pople, M. J. Frisch, “MP2 energy evaluation by direct methods”, Chem. Phys. Lett., 153:6 (1988), 503–506 | DOI

[88] F. A. Hamprecht, A. J. Cohen, D. J. Tozer, N. C. Handy, “Development and Assessment of New Exchange-correlation Functionals”, J. Chem. Phys., 109 (1998), 6264 | DOI

[89] V. S. Bystrov, P. S. Zelenovskiy, A. S. Nuraeva, S. A. Kopyl, O. A. Zhulyabina, V. A. Tverdislov, “Molecular modeling and computational study of the chiral-dependent structures and properties of the self-assembling diphenylalanine peptide nanotubes”, J. Mol. Mod., 2019

[90] V. S. Bystrov, E. V. Paramonova, Yu. Dekhtyar, R. C. Pullar, A. Katashev, N. Polyaka, A. V. Bystrova, A. V. Sapronova, V. M. Fridkin, H. Kliem, A. L. Kholkin, “Polarization of poly(vinylidene fluoride) and poly(vinylidene fluoridetrifluoroethylene) thin films revealed by emission spectroscopy with computational simulation during phase transition”, J. Appl. Phys., 111 (2012), 104113 | DOI

[91] V. S. Bystrov, E. V. Paramonova, I. K. Bdikin, A. V. Bystrova, R. C. Pullar, A. L. Kholkin, “Molecular modeling of the piezoelectric effectin the ferroelectric polymer poly(vinylidene fluoride) (PVDF)”, J. Mol. Model., 19 (2013), 3591–3602 | DOI

[92] V. S. Bystrov, I. K. Bdikin, M. Silibin, D. Karpinsky, S. Kopyl, E. V. Paramonova, G. Goncalves, “Molecular modeling of the piezoelectric properties of ferroelectric composites containing polyvinylidene fluoride (PVDF) and either graphene or graphene oxide”, J. Mol. Mod., 23:4 (2017), 128 | DOI

[93] J. N. Murrell, A. J. Harget, Semi-empirical Self-consistent-field Molecular Orbital Theory of Molecules, Wiley Interscience, New York, 1971

[94] C. J. Brandon, B. P. Martin, K. J. McGee, J. J. P. Stewart, S. B. Braun-Sand, “An approach to creating a more realistic working model from a protein data bank entry”, J. Mol. Mod., 21:1 (2015), 11 | DOI

[95] M. J. S. Dewar, W. Thiel, “The MNDO method. Approximations, parameters”, J. Amer. Chem. Soc., 99 (1977), 4899–4906 | DOI

[96] J. J. P. Stewart, “An investigation into the applicability of the semiempirical method PM7 for modeling the catalytic mechanism in the enzyme Chymotrypsin”, J. Mol. Mod, 23 (2017), 154 | DOI

[97] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, “A new general purpose quantum mechanical molecular model”, J. Am. Chem. Soc., 107 (1985), 3902–3909 | DOI

[98] T. Andrade-Filho, T. C. Martins, F. F. Ferreira, W. A. Alves, A. R. Rocha, “Water-driven stabilization of diphenylalanine nanotube structures”, Theor. Chem. Acc., 135:8 (2016), 185 | DOI

[99] E. Klein, M. Matis, V. Lukes, Z. Cibulkova, “The applicability of AM1 and PM3 semi-empirical methods for the study of NeH bond dissociation enthalpies and ionisation potentials of amine type antioxidants”, Polymer Degradation and Stability, 91 (2006), 262–270 | DOI

[100] N. L. Allinger, “Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms”, J. Am. Chem. Soc., 99:25 (1977), 8127–8134 | DOI

[101] S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, Jr. S. Profeta, P. Weiner, “A new force field for molecular mechanical simulation of nucleic acids and proteins”, J. Am. Chem. Soc., 106 (1984), 765–784 | DOI

[102] S. J. Weiner, P. A. Kollman, D. T. Nguyen, D. A. Case, “An all atom force field for simulations of proteins and nucleic acids”, J. Comput. Chem., 7 (1986), 230–252 | DOI

[103] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M.Jr. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, P. A. Kollman, “A second generation force field for the simulation of proteins and nucleic acids”, J. Am. Chem. Soc., 117 (1995), 5179–5197 | DOI

[104] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, M. Karplus, “CHARMM: A program for macromolecular energy, minimization, and dynamics calculations”, J. Comput. Chem., 4 (1983), 187–217 | DOI

[105] H. D. Flack, G. Bernardinelli, “The use of X-ray crystallography to determine absolute configuration”, Chirality, 20 (2008), 681–690 | DOI

[106] H. D. Flack, “The use of X-ray Crystallography to Determine Absolute Configuration (II)”, Acta Chim. Slov., 55:4 (2008), 689–691

[107] Hahn Th. (ed.), International Tables for Crystallography, v. A, Space-Group Symmetry, Springer, Netherlands, 2005 | MR

[108] Open Babel, (accessed 20.02.2019) https://openbabel.org/docs/dev/Installation/install.html

[109] J. E. Lennard-Jones, “On the Determination of Molecular Fields”, Proc. R. Soc. Lond. A, 106:738 (1924), 463–477 | DOI

[110] R. V. Shaitan, M. A. Lozhnikov, G. M. Kobelkov, “Relaxation Folding and the Principle of the Minimum Rate of Energy Dissipation for Conformational Motions in a Viscous Medium”, Biophysics, 61:4 (2016), 531–538 | DOI

[111] A. Y. Khokhlov A. R. Grosberg, Giant Molecules: Here, There, and Everywhere, Academic Press, 1997

[112] A. E. Sidorova, E. V. Malyshko, A. R. Kotov, N. T. Levashova, M. N. Ustinin, V. A. Tverdislov, “Protein Folding as an Autowave Process of Self-Organization in Active Media”, Bulletin of the Russian Academy of Sciences: Physic, 83:1 (2019), 85–90 | DOI

[113] Z. Hadzibabic, P. Kruger, M. Cheneau, B. Battelier, J. Dalibard, “Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas”, Nature, 441 (2006), 1118–1121 | DOI

[114] A. E. Sidorova, V. A. Tverdislov, N. T. Levashova, A. R. Kotov, M. N. Ustinin, “Quantitative approach to the assessment of chirality in hierarchies of protein structures”, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, v. 7, ed. V.D. Lakhno, IMPB RAS, Pushchino, 2018, e82 | DOI

[115] V. A. Tverdislov, E. V. Malyshko, “Chiral dualism, arrow of symmetry, molecular machines”, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, v. 7, ed. V.D. Lakhno, IMPB RAS, Pushchino, 2018, e81 | DOI

[116] M. Novotny, G. J. Kleywegt, “A survey of left-handed helices in protein structures”, J. Mol. Biol., 347:2 (2005), 231–410 | DOI