Simulation of transcatheter aortic valve implantation procedure
Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 204-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study is devoted to numerical modeling of transcatheter aortic valve implantation (TAVI) from the position of prognostic value in comparison with clinical data. The finite element method implemented in the Abaqus/CAE software and the reconstruction of three-dimensional models based on the computer microtomography of the CoreValve bioprosthesis of a size of 29 mm and the patient-specific data of functional studies (multispiral tomography) were used in the work. The study included three variations in the modeling of the aortic valve prosthesis procedure, which determine the level of detalization of the numerical experiment. All stages of the TAVI process were reproduced: the crimp of the prosthesis, the movement of the delivery system, the interaction of the guide – guidewire with the elements of the “prosthesis-root” of the aorta system, implantation itself. In silico experiment demonstrated significant quantitative and qualitative agreement with the data of intraoperative fluorography and computed tomography after the TAVI procedure. It is shown that the inclusion of additional elements – the guidewire and catheter of the delivery system into the “aortic root” has a positive effect on the convergence of the data with the clinical results. The analysis of the stress-strain state of the elements interacting in the experiment demonstrated a significant contribution to the analyzed parameters of the prosthetic motion stage along the guidewire as part of the delivery system catheter. Nevertheless, a comparison with the results of the clinical evaluation of the TAVI procedure revealed a number of differences in the response of the model of the bioprosthesis at the later stages of modeling, which requires further researches of a level of detalization. The approach is extremely promising both for practitioners and for research work of prosthetic designers, it can be applied in further R tasks.
@article{MBB_2019_14_1_a0,
     author = {K. Yu. Klyshnikov and V. I. Ganyukov and A. V. Batranin and D. V. Nyshtaev and E. A. Ovcharenko},
     title = {Simulation of transcatheter aortic valve implantation procedure},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {204--219},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a0/}
}
TY  - JOUR
AU  - K. Yu. Klyshnikov
AU  - V. I. Ganyukov
AU  - A. V. Batranin
AU  - D. V. Nyshtaev
AU  - E. A. Ovcharenko
TI  - Simulation of transcatheter aortic valve implantation procedure
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2019
SP  - 204
EP  - 219
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a0/
LA  - ru
ID  - MBB_2019_14_1_a0
ER  - 
%0 Journal Article
%A K. Yu. Klyshnikov
%A V. I. Ganyukov
%A A. V. Batranin
%A D. V. Nyshtaev
%A E. A. Ovcharenko
%T Simulation of transcatheter aortic valve implantation procedure
%J Matematičeskaâ biologiâ i bioinformatika
%D 2019
%P 204-219
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a0/
%G ru
%F MBB_2019_14_1_a0
K. Yu. Klyshnikov; V. I. Ganyukov; A. V. Batranin; D. V. Nyshtaev; E. A. Ovcharenko. Simulation of transcatheter aortic valve implantation procedure. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 204-219. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a0/

[1] B. H. Grimard, R. E. Safford, E. L. Burns, “Aortic Stenosis: Diagnosis and Treatment”, Am. Fam. Physician, 93:5 (2016), 371–378

[2] C. Harris, B. Croce, K. Phan, “Aortic stenosis”, Annals of Cardiothoracic Surgery, 4:1 (2015), 99 | DOI

[3] M. B. Leon, C. R. Smith, M. Mack, D. C. Miller, J. W. Moses, L. G. Svensson, E. M. Tuzcu, J. G. Webb, G. P. Fontana, R. R. Makkar, D. L. Brown, P. C. Block, R. A. Guyton, A. D. Pichard, J. E. Bavaria, H. C. Herrmann, P. S. Douglas, J. L. Petersen, J. J. Akin, W. N. Anderson, D. Wang, S. Pocock, “PARTNER Trial Investigators. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery”, N. Engl. J. Med., 363:17 (2010), 1597–607 | DOI

[4] G. L. Grunau, P. Blanke, J. Leipsic, “Clinical Aspects and Current Evidence Base for Transcatheter Aortic Valve Implantation”, J. Thorac. Imaging, 30:6 (2015), 341–348 | DOI

[5] M. S. Safarova, T. E. Imaev, Yu. Yu. Lorie, M. A. Saidova, M. V. Ezhov, “Transkateternoe lechenie degenerativnogo kriticheskogo stenoza aortalnogo klapana u bolnogo s tyazheloi serdechnoi nedostatochnostyu i khronicheskim limfoleikozom”, Kardiologiya, 55:1 (2015), 82–86 | DOI

[6] S. Neragi-Miandoab, R. E. Michler, “A review of most relevant complications of transcatheter aortic valve implantation”, ISRN Cardiol, 2013 (2013), 956252 | DOI

[7] A. A. Margolina, K. A. Gruzdev, M. G. Lepilin, E. A. Tabakyan, T. E. Imaev, R. S. Akchurin, “Oslozhneniya transkateternogo protezirovaniya aortalnogo klapana”, Kardiologiya, 56:2 (2016), 35–39 | DOI

[8] R. Koos, A. H. Mahnken, G. Dohmen, K. Brehmer, R. W. G-nther, R. Autschbach, N. Marx, R. Hoffmann, “Association of aortic valve calcification severity with the degree of aortic regurgitation after transcatheter aortic valve implantation”, Int. J. Cardiol., 150:2 (2011), 142–145 | DOI

[9] H. A. Dwyer, P. B. Matthews, A. Azadani, N. Jaussaud, L. Ge, T. S. Guy, E. E. Tseng, “Computational fluid dynamics simulation of transcatheter aortic valve degeneration”, Interactive CardioVascular and Thoracic Surgery, 9:2 (2009), 301–308 | DOI

[10] E. Sirois, Q. Wang, W. Sun, “Fluid simulation of a transcatheter aortic valve deployment into a patient-specific aortic root”, Cardiovas. Eng. Technol., 2:3 (2011), 186–195 | DOI

[11] C. Capelli, G. M. Bosi, E. Cerri, J. Nordmeyer, T. Odenwald, P. Bonhoeffer, F. Migliavacca, A. M. Taylor, S. Schievano, “Patient-specific simulations of transcatheter aortic valve stent implantation”, Med. Biol. Eng. Comput., 50:2 (2012), 183–192 | DOI

[12] M. Gessat, R. Hopf, T. Pollok, C. Russ, T. Frauenfelder, S. H. Sündermann, S. Hirsch, E. Mazza, G. Székely, V. Falk, “Image-based mechanical analysis of stent deformation: concept and exemplary implementation for aortic valve stents”, IEEE Trans. Biomed. Eng., 61:1 (2014), 4–15 | DOI

[13] S. Tzamtzis, J. Viquerat, J. Yap, M. J. Mullen, G. Burriesci, “Numerical analysis of the radial force produced by the Medtronic-Corevalve and Edwards-Sapien after transcatheter aortic valve implantation (TAVI)”, Med. Eng. Phys., 35:1 (2013), 125–130 | DOI

[14] B. Bosmans, N. Famaey, E. Verhoelst, J. Bosmans, J. Vander Sloten, “A validated methodology for patient specific computational modeling of self-expandable transcatheter aortic valve implantation”, J. Biomech., 49:13 (2016), 2824–2830 | DOI

[15] S. Grbic, T. Mansi, R. Ionasec, I. Voigt, H. Houle, M. John, M. Schoebinger, N. Navab, D. Comaniciu, “Image-based computational models for TAVI planning: from CT images to implant deployment”, Med. Image Comput. Comput. Assist. Interv., 16:2 (2013), 395–402

[16] A. Finotello, S. Morganti, F. Auricchio, “Finite element analysis of TAVI: Impact of native aortic root computational modeling strategies on simulation outcomes”, Med. Eng. Phys., 47 (2017), 2–12 | DOI

[17] B. Bosmans, N. Famaey, E. Verhoelst, J. Bosmans, J. Vander Sloten, “A validated methodology for patient specific computational modeling of self-expandable transcatheter aortic valve implantation”, J. Biomech., 49:13 (2016), 2824–2830 | DOI

[18] V. Phuoc, V. Auffret, M. Castro, P. Badel, M. Rochette, “Study of the Behavior of Different Guidewire Shapes in a Patient-specific Numerical Model for Transcatheter Aortic Valve Implantation”, Computing in Cardiology, 44 (2017), 1–4 | DOI

[19] J. Gindre, A. Bel-Brunon, M. Rochette, A. Lucas, A. Kaladji, P. Haigron, A. Combescure, “Patient-Specific Finite-Element Simulation of the Insertion of Guidewire During an EVAR Procedure: Guidewire Position Prediction Validation on 28 Cases”, IEEE Trans. Biomed. Eng., 64:5 (2017), 1057–1066 | DOI

[20] E. A. Ovcharenko, K. U. Klyshnikov, A. E. Yuzhalin, G. V. Savrasov, A. N. Kokov, A. V. Batranin, V. I. Ganyukov, Y. A. Kudryavtseva, “Modeling of transcatheter aortic valve replacement: Patient specific vs general approaches based on finite element analysis”, Comput. Biol. Med., 69 (2016), 29–36 | DOI

[21] T. Belytschko, J. I. Lin, C. S. Tsay, “Explicit algorithms for the nonlinear dynamics of shells”, Computer Methods in Applied Mechanics and Engineering, 43 (2004), 251–276 | DOI

[22] Abaqus User Manual: Abaqus User Manual. Version 6.14, Dassault Systemes Simulia Corp, USA, 2014

[23] H. Zahedmanesh, D. John Kelly, C. Lally, “Simulation of a balloon expandable stent in a realistic coronary artery-Determination of the optimum modelling strategy”, J. Biomech., 43:11 (2010), 2126–2132 | DOI

[24] Abaqus User Manual: Abaqus Theory Guide. Version 6.14, Dassault Systemes Simulia Corp, USA, 2014

[25] S. Vulovic, M. Zivkovic, N. Grujovic, “Contact Problems Based on the Penalty Method”, Scientific Technical Review, 63:3-4 (2008), 2126–2132

[26] Z. H. Zhong, “Contact Problems with Friction”, Proceedings of Numiform, 89 (1989), 599–606

[27] X. Y. Gong, A. R. Pelton, T. W. Duerig, N. Rebelo, K. Perry, “Finite element analysis and experimental evaluation of superelastic Nitinol stent”, Proceedings of the International Conference on Shape Memory and Superelastic Technologies, SMST 2003, 2003, 453–462

[28] E. A. Ovcharenko, K. U. Klyshnikov, A. E. Yuzhalin, G. V. Savrasov, T. V. Glushkova, G. U. Vasukov, D. V. Nushtaev, Y. A. Kudryavtseva, L. S. Barbarash, “Comparison of xenopericardial patches of different origin and type of fixation implemented for TAVI”, International Journal of Biomedical Engineering and Technology, 25:1 (2017), 44–59 | DOI

[29] F. Sturla, E. Votta, M. Stevanella, C. A. Conti, A. Redaelli, “Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics”, Med. Eng. Phys., 35:12 (2013), 1721–1730 | DOI

[30] A. Maier, M. W. Gee, C. Reeps, H. H. Eckstein, W. A. Wall, “Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms”, Biomech. Model. Mechanobiol., 9:5 (2010), 511–521 | DOI

[31] N. El Faquir, B. Ren, N. M. Van Mieghem, J. Bosmans, P. P. de Jaegere, “Patient-specific computer modelling its role in the planning of transcatheter aortic valve implantation”, Netherlands Heart Journal, 25:2 (2017), 100–105 | DOI

[32] F. Auricchio, R. L. Taylor, “Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior”, Computer Methods in Applied Mechanics and Engineering, 143:1-2 (1997), 175–194 | DOI | Zbl

[33] F. Nijhoff, P. Agostoni, H. Amrane, A. Latib, L. Testa, J. A. Oreglia, F. De Marco, M. Samim, F. Bedogni, F. Maisano, G. Bruschi, A. Colombo, A. J. Van Boven, P. R. Stella, “Transcatheter aortic valve implantation in patients with severe aortic valve stenosis and large aortic annulus, using the self-expanding 31-mm Medtronic CoreValve prosthesis: first clinical experience”, J. Thorac. Cardiovasc. Surg., 148:2 (2014), 492–499.e1 | DOI

[34] M. F. Urbano, F. Auricchio, “Modeling Permanent Deformations of Superelastic and Shape Memory Materials”, Journal of Functional Biomaterials, 6:2 (2015), 398–406 | DOI

[35] S. Morganti, M. Conti, M. Aiello, A. Valentini, A. Mazzola, A. Reali, F. Auricchio, “Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: two clinical cases”, J. Biomech., 47:11 (2014), 2547–2555 | DOI