Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2019_14_1_a0, author = {K. Yu. Klyshnikov and V. I. Ganyukov and A. V. Batranin and D. V. Nyshtaev and E. A. Ovcharenko}, title = {Simulation of transcatheter aortic valve implantation procedure}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {204--219}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a0/} }
TY - JOUR AU - K. Yu. Klyshnikov AU - V. I. Ganyukov AU - A. V. Batranin AU - D. V. Nyshtaev AU - E. A. Ovcharenko TI - Simulation of transcatheter aortic valve implantation procedure JO - Matematičeskaâ biologiâ i bioinformatika PY - 2019 SP - 204 EP - 219 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a0/ LA - ru ID - MBB_2019_14_1_a0 ER -
%0 Journal Article %A K. Yu. Klyshnikov %A V. I. Ganyukov %A A. V. Batranin %A D. V. Nyshtaev %A E. A. Ovcharenko %T Simulation of transcatheter aortic valve implantation procedure %J Matematičeskaâ biologiâ i bioinformatika %D 2019 %P 204-219 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a0/ %G ru %F MBB_2019_14_1_a0
K. Yu. Klyshnikov; V. I. Ganyukov; A. V. Batranin; D. V. Nyshtaev; E. A. Ovcharenko. Simulation of transcatheter aortic valve implantation procedure. Matematičeskaâ biologiâ i bioinformatika, Tome 14 (2019) no. 1, pp. 204-219. http://geodesic.mathdoc.fr/item/MBB_2019_14_1_a0/
[1] B. H. Grimard, R. E. Safford, E. L. Burns, “Aortic Stenosis: Diagnosis and Treatment”, Am. Fam. Physician, 93:5 (2016), 371–378
[2] C. Harris, B. Croce, K. Phan, “Aortic stenosis”, Annals of Cardiothoracic Surgery, 4:1 (2015), 99 | DOI
[3] M. B. Leon, C. R. Smith, M. Mack, D. C. Miller, J. W. Moses, L. G. Svensson, E. M. Tuzcu, J. G. Webb, G. P. Fontana, R. R. Makkar, D. L. Brown, P. C. Block, R. A. Guyton, A. D. Pichard, J. E. Bavaria, H. C. Herrmann, P. S. Douglas, J. L. Petersen, J. J. Akin, W. N. Anderson, D. Wang, S. Pocock, “PARTNER Trial Investigators. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery”, N. Engl. J. Med., 363:17 (2010), 1597–607 | DOI
[4] G. L. Grunau, P. Blanke, J. Leipsic, “Clinical Aspects and Current Evidence Base for Transcatheter Aortic Valve Implantation”, J. Thorac. Imaging, 30:6 (2015), 341–348 | DOI
[5] M. S. Safarova, T. E. Imaev, Yu. Yu. Lorie, M. A. Saidova, M. V. Ezhov, “Transkateternoe lechenie degenerativnogo kriticheskogo stenoza aortalnogo klapana u bolnogo s tyazheloi serdechnoi nedostatochnostyu i khronicheskim limfoleikozom”, Kardiologiya, 55:1 (2015), 82–86 | DOI
[6] S. Neragi-Miandoab, R. E. Michler, “A review of most relevant complications of transcatheter aortic valve implantation”, ISRN Cardiol, 2013 (2013), 956252 | DOI
[7] A. A. Margolina, K. A. Gruzdev, M. G. Lepilin, E. A. Tabakyan, T. E. Imaev, R. S. Akchurin, “Oslozhneniya transkateternogo protezirovaniya aortalnogo klapana”, Kardiologiya, 56:2 (2016), 35–39 | DOI
[8] R. Koos, A. H. Mahnken, G. Dohmen, K. Brehmer, R. W. G-nther, R. Autschbach, N. Marx, R. Hoffmann, “Association of aortic valve calcification severity with the degree of aortic regurgitation after transcatheter aortic valve implantation”, Int. J. Cardiol., 150:2 (2011), 142–145 | DOI
[9] H. A. Dwyer, P. B. Matthews, A. Azadani, N. Jaussaud, L. Ge, T. S. Guy, E. E. Tseng, “Computational fluid dynamics simulation of transcatheter aortic valve degeneration”, Interactive CardioVascular and Thoracic Surgery, 9:2 (2009), 301–308 | DOI
[10] E. Sirois, Q. Wang, W. Sun, “Fluid simulation of a transcatheter aortic valve deployment into a patient-specific aortic root”, Cardiovas. Eng. Technol., 2:3 (2011), 186–195 | DOI
[11] C. Capelli, G. M. Bosi, E. Cerri, J. Nordmeyer, T. Odenwald, P. Bonhoeffer, F. Migliavacca, A. M. Taylor, S. Schievano, “Patient-specific simulations of transcatheter aortic valve stent implantation”, Med. Biol. Eng. Comput., 50:2 (2012), 183–192 | DOI
[12] M. Gessat, R. Hopf, T. Pollok, C. Russ, T. Frauenfelder, S. H. Sündermann, S. Hirsch, E. Mazza, G. Székely, V. Falk, “Image-based mechanical analysis of stent deformation: concept and exemplary implementation for aortic valve stents”, IEEE Trans. Biomed. Eng., 61:1 (2014), 4–15 | DOI
[13] S. Tzamtzis, J. Viquerat, J. Yap, M. J. Mullen, G. Burriesci, “Numerical analysis of the radial force produced by the Medtronic-Corevalve and Edwards-Sapien after transcatheter aortic valve implantation (TAVI)”, Med. Eng. Phys., 35:1 (2013), 125–130 | DOI
[14] B. Bosmans, N. Famaey, E. Verhoelst, J. Bosmans, J. Vander Sloten, “A validated methodology for patient specific computational modeling of self-expandable transcatheter aortic valve implantation”, J. Biomech., 49:13 (2016), 2824–2830 | DOI
[15] S. Grbic, T. Mansi, R. Ionasec, I. Voigt, H. Houle, M. John, M. Schoebinger, N. Navab, D. Comaniciu, “Image-based computational models for TAVI planning: from CT images to implant deployment”, Med. Image Comput. Comput. Assist. Interv., 16:2 (2013), 395–402
[16] A. Finotello, S. Morganti, F. Auricchio, “Finite element analysis of TAVI: Impact of native aortic root computational modeling strategies on simulation outcomes”, Med. Eng. Phys., 47 (2017), 2–12 | DOI
[17] B. Bosmans, N. Famaey, E. Verhoelst, J. Bosmans, J. Vander Sloten, “A validated methodology for patient specific computational modeling of self-expandable transcatheter aortic valve implantation”, J. Biomech., 49:13 (2016), 2824–2830 | DOI
[18] V. Phuoc, V. Auffret, M. Castro, P. Badel, M. Rochette, “Study of the Behavior of Different Guidewire Shapes in a Patient-specific Numerical Model for Transcatheter Aortic Valve Implantation”, Computing in Cardiology, 44 (2017), 1–4 | DOI
[19] J. Gindre, A. Bel-Brunon, M. Rochette, A. Lucas, A. Kaladji, P. Haigron, A. Combescure, “Patient-Specific Finite-Element Simulation of the Insertion of Guidewire During an EVAR Procedure: Guidewire Position Prediction Validation on 28 Cases”, IEEE Trans. Biomed. Eng., 64:5 (2017), 1057–1066 | DOI
[20] E. A. Ovcharenko, K. U. Klyshnikov, A. E. Yuzhalin, G. V. Savrasov, A. N. Kokov, A. V. Batranin, V. I. Ganyukov, Y. A. Kudryavtseva, “Modeling of transcatheter aortic valve replacement: Patient specific vs general approaches based on finite element analysis”, Comput. Biol. Med., 69 (2016), 29–36 | DOI
[21] T. Belytschko, J. I. Lin, C. S. Tsay, “Explicit algorithms for the nonlinear dynamics of shells”, Computer Methods in Applied Mechanics and Engineering, 43 (2004), 251–276 | DOI
[22] Abaqus User Manual: Abaqus User Manual. Version 6.14, Dassault Systemes Simulia Corp, USA, 2014
[23] H. Zahedmanesh, D. John Kelly, C. Lally, “Simulation of a balloon expandable stent in a realistic coronary artery-Determination of the optimum modelling strategy”, J. Biomech., 43:11 (2010), 2126–2132 | DOI
[24] Abaqus User Manual: Abaqus Theory Guide. Version 6.14, Dassault Systemes Simulia Corp, USA, 2014
[25] S. Vulovic, M. Zivkovic, N. Grujovic, “Contact Problems Based on the Penalty Method”, Scientific Technical Review, 63:3-4 (2008), 2126–2132
[26] Z. H. Zhong, “Contact Problems with Friction”, Proceedings of Numiform, 89 (1989), 599–606
[27] X. Y. Gong, A. R. Pelton, T. W. Duerig, N. Rebelo, K. Perry, “Finite element analysis and experimental evaluation of superelastic Nitinol stent”, Proceedings of the International Conference on Shape Memory and Superelastic Technologies, SMST 2003, 2003, 453–462
[28] E. A. Ovcharenko, K. U. Klyshnikov, A. E. Yuzhalin, G. V. Savrasov, T. V. Glushkova, G. U. Vasukov, D. V. Nushtaev, Y. A. Kudryavtseva, L. S. Barbarash, “Comparison of xenopericardial patches of different origin and type of fixation implemented for TAVI”, International Journal of Biomedical Engineering and Technology, 25:1 (2017), 44–59 | DOI
[29] F. Sturla, E. Votta, M. Stevanella, C. A. Conti, A. Redaelli, “Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics”, Med. Eng. Phys., 35:12 (2013), 1721–1730 | DOI
[30] A. Maier, M. W. Gee, C. Reeps, H. H. Eckstein, W. A. Wall, “Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms”, Biomech. Model. Mechanobiol., 9:5 (2010), 511–521 | DOI
[31] N. El Faquir, B. Ren, N. M. Van Mieghem, J. Bosmans, P. P. de Jaegere, “Patient-specific computer modelling its role in the planning of transcatheter aortic valve implantation”, Netherlands Heart Journal, 25:2 (2017), 100–105 | DOI
[32] F. Auricchio, R. L. Taylor, “Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior”, Computer Methods in Applied Mechanics and Engineering, 143:1-2 (1997), 175–194 | DOI | Zbl
[33] F. Nijhoff, P. Agostoni, H. Amrane, A. Latib, L. Testa, J. A. Oreglia, F. De Marco, M. Samim, F. Bedogni, F. Maisano, G. Bruschi, A. Colombo, A. J. Van Boven, P. R. Stella, “Transcatheter aortic valve implantation in patients with severe aortic valve stenosis and large aortic annulus, using the self-expanding 31-mm Medtronic CoreValve prosthesis: first clinical experience”, J. Thorac. Cardiovasc. Surg., 148:2 (2014), 492–499.e1 | DOI
[34] M. F. Urbano, F. Auricchio, “Modeling Permanent Deformations of Superelastic and Shape Memory Materials”, Journal of Functional Biomaterials, 6:2 (2015), 398–406 | DOI
[35] S. Morganti, M. Conti, M. Aiello, A. Valentini, A. Mazzola, A. Reali, F. Auricchio, “Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: two clinical cases”, J. Biomech., 47:11 (2014), 2547–2555 | DOI