Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_a7, author = {N. V. Pertsev and B. Yu. Pichugin and A. N. Pichugina}, title = {Application of {M-matrices} for the study of mathematical models of living systems}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t104--t131}, publisher = {mathdoc}, volume = {13}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_a7/} }
TY - JOUR AU - N. V. Pertsev AU - B. Yu. Pichugin AU - A. N. Pichugina TI - Application of M-matrices for the study of mathematical models of living systems JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - t104 EP - t131 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_a7/ LA - en ID - MBB_2018_13_a7 ER -
%0 Journal Article %A N. V. Pertsev %A B. Yu. Pichugin %A A. N. Pichugina %T Application of M-matrices for the study of mathematical models of living systems %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P t104-t131 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_a7/ %G en %F MBB_2018_13_a7
N. V. Pertsev; B. Yu. Pichugin; A. N. Pichugina. Application of M-matrices for the study of mathematical models of living systems. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018), pp. t104-t131. http://geodesic.mathdoc.fr/item/MBB_2018_13_a7/
[1] Gantmacher F. R., The Theory of Matrices, AMS Chelsea Publishing ; American Mathematical Society, 2000, 660 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=863127'>863127</ext-link>
[2] Voevodin V.V., Kuznetsov Yu.A., Matrices and Calculations, Nauka, M., 1984, 320 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=758446'>758446</ext-link>
[3] Bellman R., Introduction to Matrix Theory, Nauka, M., 1976, 352 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=258846'>258846</ext-link>
[4] Sevastyanov B.A., Branching Processes, Nauka, M., 1971, 436 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=345229'>345229</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0238.60001'>0238.60001</ext-link>
[5] Ortega J.M., Rheinboldt W.C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York–London, 1970 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=273810'>273810</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0241.65046'>0241.65046</ext-link>
[6] Berman A., Plemmons R. J., Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979, 340 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=544666'>544666</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0484.15016'>0484.15016</ext-link>
[7] Hale J., Theory of Functional Differential Equations, Springer-Verlag, New York–Heidelberg–Berlin, 1977, 365 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=508721'>508721</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0352.34001'>0352.34001</ext-link>
[8] Kolmanovsky V.B., Nosov V.R., Stability and Periodical Regiments with After-Effect, Nauka, M., 1981, 448 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=641554'>641554</ext-link>
[9] Obolenskii A.Y., “Stability of Solutions of Autonomous Wazewski Systems with Delayed Action”, Ukranian Mathematical Journal, 35:5 (1984), 486–492 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF01061640'>10.1007/BF01061640</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=723116'>723116</ext-link>
[10] Volz R., “Stability conditions for systems of linear nonautonomous delay differential equations”, J. Math. Anal. Appl., 120:2 (1986), 584–595 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-247X(86)90181-2'>10.1016/0022-247X(86)90181-2</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=864776'>864776</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0618.34066'>0618.34066</ext-link>
[11] Gyori I., Pertsev N.V., “On the stability of Equilibrium States of Functional-Differential Equations of Retarded Type Possessing a Mixed Monotone Property”, Doklady Akademii Nauk SSSR, 297:1 (1987), 23–25 (in Russ.)
[12] Demidovich B.P., Lectures on Mathematical Stability Theory, Nauka, M., 1967, 472 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=226126'>226126</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0155.41601'>0155.41601</ext-link>
[13] Marchuk G.I., Mathematical Models in Immunology, Nauka, M., 1985, 240 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=819993'>819993</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0603.92004'>0603.92004</ext-link>
[14] Marchuk G.I., Mathematical Models in Immunology. Computational Methods and Experiments, Nauka, M., 1991, 304 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1190269'>1190269</ext-link>
[15] Els'golts L.I., Norkin S.B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Mathematics in Science and Engineering, Academic Press, 1973 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=352647'>352647</ext-link>
[16] Nelson P. W., Perelson A. S., “Mathematical analysis of delay differential equation models of HIV-1 infection”, Math. Biosci., 179 (2002), 73–94 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0025-5564(02)00099-8'>10.1016/S0025-5564(02)00099-8</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1908737'>1908737</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0992.92035'>0992.92035</ext-link>
[17] Bocharov G., Chereshnev V., Gainova I., Bazhan S., Bachmetyev B., Argilaguet J., Martinez J., Meyerhans A., “Human Immunodeficiency Virus Infection: from Biological Observations to Mechanistic Mathematical Modelling”, Math. Model. Nat. Phenom., 7:5 (2012), 78–104 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1051/mmnp/20127507'>http://dx.doi.org/10.1051/mmnp/20127507</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2989627'>2989627</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1261.92033'>1261.92033</ext-link>
[18] Pawelek K. A., Liu S., Pahlevani F., Rong L., “A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data”, Math. Biosci., 235:1 (2012), 98–109 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.mbs.2011.11.002'>http://dx.doi.org/10.1016/j.mbs.2011.11.002</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2901030'>2901030</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1241.92042'>1241.92042</ext-link>
[19] Pitchaimani M., Monica C., “Global stability analysis of HIV-1 infection model with three time delays”, J. Appl. Math. Comput., 48 (2015), 293–319 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1007/s12190-014-0803-4'>http://dx.doi.org/10.1007/s12190-014-0803-4</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3340607'>3340607</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1362.93134'>1362.93134</ext-link>
[20] Wang J., Lang J., Zou X., “Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission”, Nonlinear Analysis: Real World Applications, 34 (2017), 75–96 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.nonrwa.2016.08.001'>http://dx.doi.org/10.1016/j.nonrwa.2016.08.001</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3567950'>3567950</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1352.92174'>1352.92174</ext-link>
[21] Pertsev N.V., “Global solvability and estimates for solutions to the Cauchy problem for the retarded functional differential equations that are used to the model living systems”, Siberian Mathematical Journal, 59:1 (2018), 113–125 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1134/S0037446618010135'>http://dx.doi.org/10.1134/S0037446618010135</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3869945'>3869945</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1392.34092'>1392.34092</ext-link>
[22] Pertsev N.V., “Discrete-continuous Model of Tuberculosis Spread and Control”, Siberian Journal of Industrial Mathematics, 17:3 (2014), 86–97 (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3364409'>3364409</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1340.34227'>1340.34227</ext-link>
[23] Pertsev N.V., “Analysis of Solutions to Mathematical Models of Epidemic Processes with Common Structural properties”, Siberian Journal of Industrial Mathematics, 18:2 (2015), 85–98 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17377/sibjim.2015.18.209'>http://dx.doi.org/10.17377/sibjim.2015.18.209</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3549831'>3549831</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1349.92146'>1349.92146</ext-link>
[24] Romanyukha A.A., Nosova E.A., “Modeling Spread of HIV as Result of Social Maladjustment in Population”, UBS, 34 (2011), 227–253 (in Russ.)
[25] Nosova E.A., “Models of Control and Spread of HIV-infection”, Mat. Biolog. Bioinform., 7:2 (2012), 632–675 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17537/2012.7.632'>http://dx.doi.org/10.17537/2012.7.632</ext-link>
[26] Pertsev N.V., Pichugin B.Yu. , Pichugina A.N., “Analysis of the Asymptotic Behavior Solutions of Some Models of Epidemic Processes”, Mat. Biol. Bioinform., 8:1 (2013), 21–48 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17537/2013.8.21'>http://dx.doi.org/10.17537/2013.8.21</ext-link>
[27] Pichugina A.N., “An Integrodifferential Model of a Population under the Effects of Pollutants”, Siberian Journal of Industrial Mathematics, 7:4 (2004), 130–140 (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2140658'>2140658</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1059.92057'>1059.92057</ext-link>
[28] Pertsev N.V., Tsaregorodtseva G.E., “Modeling population dynamics under the influence of harmful substances on the individual reproduction process”, Automation and Remote Control, 72:1 (2011), 129–140 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1134/S0005117911010115'>http://dx.doi.org/10.1134/S0005117911010115</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2808559'>2808559</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1232.93009'>1232.93009</ext-link>
[29] Romanovskii Yu.M., Stepanova N.V., Chernavsky D.S., Mathematical Biophysics, Nauka, M., 1984, 304 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=756240'>756240</ext-link>
[30] Alexandrov A.Yu., Zhabko A.P., “On the Asymptotic Stability of Solutions of Nonlinear Systems with Delay”, Siberian Mathematical Journal, 53:3 (2012), 495–508 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1134/S0037446612020218'>http://dx.doi.org/10.1134/S0037446612020218</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2978570'>2978570</ext-link>
[31] Balandin A.S., Sabatulina T.L., “The Local Stability of a Population Dynamics Model in Conditions of Deleterious Effects”, Sib. Elektron. Mat. Izv., 12 (2015), 610–624 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17377/semi.2015.12.049'>http://dx.doi.org/10.17377/semi.2015.12.049</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3493768'>3493768</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1345.34135'>1345.34135</ext-link>
[32] Malygina V.V., Mulyukov M.V., “On Local Stability of a Population Dynamics Model with Three Development Stages”, Russ Math., 61:4 (2017), 29–34 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.3103/S1066369X17040053'>http://dx.doi.org/10.3103/S1066369X17040053</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3752684'>3752684</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1371.92110'>1371.92110</ext-link>
[33] Golubyatnikov V.P., Kirillova N.E., “On Cycles in Models of Functioning of Circular Gene Networks”, Sib. J. Pure and Appl. Math., 18:1 (2018), 54–63 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17377/PAM.2018.18.5'>http://dx.doi.org/10.17377/PAM.2018.18.5</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3813717'>3813717</ext-link>
[34] Bocharov G.A., Marchuk G.I., “Applied problems of mathematical modeling in immunology”, Comput. Math. Math. Phys., 40:12 (2000), 1830–1844 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1830364'>1830364</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0997.92021'>0997.92021</ext-link>
[35] Luzyanina T., Sieber J., Engelborghs K., Samaey G., Roose D., “Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL”, Mathematical Biology and Bioinformatics, 12:2 (2017), 496–520 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17537/2017.12.496'>http://dx.doi.org/10.17537/2017.12.496</ext-link>