Application of M-matrices for the study of mathematical models of living systems
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018), pp. t104-t131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present some results of the application of M-matrices to the study the stability problem of the equilibriums of differential equations used in models of living systems. The models of living systems are described by differential equations with several delays, including distributed delay, and by high-dimensional systems of differential equations. To study the stability of the equilibriums the linearization method is used. Emerging systems of linear differential equations have a specific structure of the right-hand parts, which allows to effectively use the properties of M-matrices. As examples, the results of studies of models arising in immunology, epidemiology and ecology are presented.
@article{MBB_2018_13_a7,
     author = {N. V. Pertsev and B. Yu. Pichugin and A. N. Pichugina},
     title = {Application of {M-matrices} for the study of mathematical models of living systems},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t104--t131},
     publisher = {mathdoc},
     volume = {13},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_a7/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - B. Yu. Pichugin
AU  - A. N. Pichugina
TI  - Application of M-matrices for the study of mathematical models of living systems
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - t104
EP  - t131
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_a7/
LA  - en
ID  - MBB_2018_13_a7
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A B. Yu. Pichugin
%A A. N. Pichugina
%T Application of M-matrices for the study of mathematical models of living systems
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P t104-t131
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_a7/
%G en
%F MBB_2018_13_a7
N. V. Pertsev; B. Yu. Pichugin; A. N. Pichugina. Application of M-matrices for the study of mathematical models of living systems. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018), pp. t104-t131. http://geodesic.mathdoc.fr/item/MBB_2018_13_a7/

[1] Gantmacher F. R., The Theory of Matrices, AMS Chelsea Publishing ; American Mathematical Society, 2000, 660 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=863127'>863127</ext-link>

[2] Voevodin V.V., Kuznetsov Yu.A., Matrices and Calculations, Nauka, M., 1984, 320 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=758446'>758446</ext-link>

[3] Bellman R., Introduction to Matrix Theory, Nauka, M., 1976, 352 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=258846'>258846</ext-link>

[4] Sevastyanov B.A., Branching Processes, Nauka, M., 1971, 436 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=345229'>345229</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0238.60001'>0238.60001</ext-link>

[5] Ortega J.M., Rheinboldt W.C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York–London, 1970 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=273810'>273810</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0241.65046'>0241.65046</ext-link>

[6] Berman A., Plemmons R. J., Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979, 340 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=544666'>544666</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0484.15016'>0484.15016</ext-link>

[7] Hale J., Theory of Functional Differential Equations, Springer-Verlag, New York–Heidelberg–Berlin, 1977, 365 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=508721'>508721</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0352.34001'>0352.34001</ext-link>

[8] Kolmanovsky V.B., Nosov V.R., Stability and Periodical Regiments with After-Effect, Nauka, M., 1981, 448 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=641554'>641554</ext-link>

[9] Obolenskii A.Y., “Stability of Solutions of Autonomous Wazewski Systems with Delayed Action”, Ukranian Mathematical Journal, 35:5 (1984), 486–492 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF01061640'>10.1007/BF01061640</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=723116'>723116</ext-link>

[10] Volz R., “Stability conditions for systems of linear nonautonomous delay differential equations”, J. Math. Anal. Appl., 120:2 (1986), 584–595 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-247X(86)90181-2'>10.1016/0022-247X(86)90181-2</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=864776'>864776</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0618.34066'>0618.34066</ext-link>

[11] Gyori I., Pertsev N.V., “On the stability of Equilibrium States of Functional-Differential Equations of Retarded Type Possessing a Mixed Monotone Property”, Doklady Akademii Nauk SSSR, 297:1 (1987), 23–25 (in Russ.)

[12] Demidovich B.P., Lectures on Mathematical Stability Theory, Nauka, M., 1967, 472 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=226126'>226126</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0155.41601'>0155.41601</ext-link>

[13] Marchuk G.I., Mathematical Models in Immunology, Nauka, M., 1985, 240 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=819993'>819993</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0603.92004'>0603.92004</ext-link>

[14] Marchuk G.I., Mathematical Models in Immunology. Computational Methods and Experiments, Nauka, M., 1991, 304 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1190269'>1190269</ext-link>

[15] Els'golts L.I., Norkin S.B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Mathematics in Science and Engineering, Academic Press, 1973 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=352647'>352647</ext-link>

[16] Nelson P. W., Perelson A. S., “Mathematical analysis of delay differential equation models of HIV-1 infection”, Math. Biosci., 179 (2002), 73–94 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0025-5564(02)00099-8'>10.1016/S0025-5564(02)00099-8</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1908737'>1908737</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0992.92035'>0992.92035</ext-link>

[17] Bocharov G., Chereshnev V., Gainova I., Bazhan S., Bachmetyev B., Argilaguet J., Martinez J., Meyerhans A., “Human Immunodeficiency Virus Infection: from Biological Observations to Mechanistic Mathematical Modelling”, Math. Model. Nat. Phenom., 7:5 (2012), 78–104 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1051/mmnp/20127507'>http://dx.doi.org/10.1051/mmnp/20127507</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2989627'>2989627</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1261.92033'>1261.92033</ext-link>

[18] Pawelek K. A., Liu S., Pahlevani F., Rong L., “A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data”, Math. Biosci., 235:1 (2012), 98–109 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.mbs.2011.11.002'>http://dx.doi.org/10.1016/j.mbs.2011.11.002</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2901030'>2901030</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1241.92042'>1241.92042</ext-link>

[19] Pitchaimani M., Monica C., “Global stability analysis of HIV-1 infection model with three time delays”, J. Appl. Math. Comput., 48 (2015), 293–319 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1007/s12190-014-0803-4'>http://dx.doi.org/10.1007/s12190-014-0803-4</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3340607'>3340607</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1362.93134'>1362.93134</ext-link>

[20] Wang J., Lang J., Zou X., “Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission”, Nonlinear Analysis: Real World Applications, 34 (2017), 75–96 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/j.nonrwa.2016.08.001'>http://dx.doi.org/10.1016/j.nonrwa.2016.08.001</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3567950'>3567950</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1352.92174'>1352.92174</ext-link>

[21] Pertsev N.V., “Global solvability and estimates for solutions to the Cauchy problem for the retarded functional differential equations that are used to the model living systems”, Siberian Mathematical Journal, 59:1 (2018), 113–125 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1134/S0037446618010135'>http://dx.doi.org/10.1134/S0037446618010135</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3869945'>3869945</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1392.34092'>1392.34092</ext-link>

[22] Pertsev N.V., “Discrete-continuous Model of Tuberculosis Spread and Control”, Siberian Journal of Industrial Mathematics, 17:3 (2014), 86–97 (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3364409'>3364409</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1340.34227'>1340.34227</ext-link>

[23] Pertsev N.V., “Analysis of Solutions to Mathematical Models of Epidemic Processes with Common Structural properties”, Siberian Journal of Industrial Mathematics, 18:2 (2015), 85–98 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17377/sibjim.2015.18.209'>http://dx.doi.org/10.17377/sibjim.2015.18.209</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3549831'>3549831</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1349.92146'>1349.92146</ext-link>

[24] Romanyukha A.A., Nosova E.A., “Modeling Spread of HIV as Result of Social Maladjustment in Population”, UBS, 34 (2011), 227–253 (in Russ.)

[25] Nosova E.A., “Models of Control and Spread of HIV-infection”, Mat. Biolog. Bioinform., 7:2 (2012), 632–675 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17537/2012.7.632'>http://dx.doi.org/10.17537/2012.7.632</ext-link>

[26] Pertsev N.V., Pichugin B.Yu. , Pichugina A.N., “Analysis of the Asymptotic Behavior Solutions of Some Models of Epidemic Processes”, Mat. Biol. Bioinform., 8:1 (2013), 21–48 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17537/2013.8.21'>http://dx.doi.org/10.17537/2013.8.21</ext-link>

[27] Pichugina A.N., “An Integrodifferential Model of a Population under the Effects of Pollutants”, Siberian Journal of Industrial Mathematics, 7:4 (2004), 130–140 (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2140658'>2140658</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1059.92057'>1059.92057</ext-link>

[28] Pertsev N.V., Tsaregorodtseva G.E., “Modeling population dynamics under the influence of harmful substances on the individual reproduction process”, Automation and Remote Control, 72:1 (2011), 129–140 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1134/S0005117911010115'>http://dx.doi.org/10.1134/S0005117911010115</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2808559'>2808559</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1232.93009'>1232.93009</ext-link>

[29] Romanovskii Yu.M., Stepanova N.V., Chernavsky D.S., Mathematical Biophysics, Nauka, M., 1984, 304 pp. (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=756240'>756240</ext-link>

[30] Alexandrov A.Yu., Zhabko A.P., “On the Asymptotic Stability of Solutions of Nonlinear Systems with Delay”, Siberian Mathematical Journal, 53:3 (2012), 495–508 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1134/S0037446612020218'>http://dx.doi.org/10.1134/S0037446612020218</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2978570'>2978570</ext-link>

[31] Balandin A.S., Sabatulina T.L., “The Local Stability of a Population Dynamics Model in Conditions of Deleterious Effects”, Sib. Elektron. Mat. Izv., 12 (2015), 610–624 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17377/semi.2015.12.049'>http://dx.doi.org/10.17377/semi.2015.12.049</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3493768'>3493768</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1345.34135'>1345.34135</ext-link>

[32] Malygina V.V., Mulyukov M.V., “On Local Stability of a Population Dynamics Model with Three Development Stages”, Russ Math., 61:4 (2017), 29–34 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.3103/S1066369X17040053'>http://dx.doi.org/10.3103/S1066369X17040053</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3752684'>3752684</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1371.92110'>1371.92110</ext-link>

[33] Golubyatnikov V.P., Kirillova N.E., “On Cycles in Models of Functioning of Circular Gene Networks”, Sib. J. Pure and Appl. Math., 18:1 (2018), 54–63 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17377/PAM.2018.18.5'>http://dx.doi.org/10.17377/PAM.2018.18.5</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3813717'>3813717</ext-link>

[34] Bocharov G.A., Marchuk G.I., “Applied problems of mathematical modeling in immunology”, Comput. Math. Math. Phys., 40:12 (2000), 1830–1844 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1830364'>1830364</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0997.92021'>0997.92021</ext-link>

[35] Luzyanina T., Sieber J., Engelborghs K., Samaey G., Roose D., “Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL”, Mathematical Biology and Bioinformatics, 12:2 (2017), 496–520 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17537/2017.12.496'>http://dx.doi.org/10.17537/2017.12.496</ext-link>