Comparative analysis of amino acid sequences in particular domains of Hoc proteins in \emph{Teequatrovirinae} subfamily bacteriophages
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018), pp. t39-t58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work presents the results of comparative research into immunoglobulinlike domains in the genomes of T4-related bacteriophages. Hoc proteins are proposed to be used for classification of the Teequatrovirinae phage subfamily. Particular domains in 31 Hoc proteins of the subfamily were subjected to phylogenetic analysis. The number of domains in Hoc proteins of different bacteriophages in the subfamily was shown to vary from one to five. Based on this, bacteriophages can be divided into six subgroups. The phylogenetic tree of the domains in hoc gene product proteins of T4-related bacteriophages forms three major branches. These are the branches of C-terminal, Nterminal and intermediate domains. The obligatory occurrence of the C-terminal domain in all Hoc proteins is indicative of its functional and structural significance for the formation of the protein and its attachment to phage’s capsid. Hypothetical schemes for the evolutionary origin of repeated amino acid sequences in Hoc proteins were formulated.
@article{MBB_2018_13_a3,
     author = {A. A. Zimin and G. V. Mikoulinskaia and L. F. Nigmatullina and N. N. Nazipova},
     title = {Comparative analysis of amino acid sequences in particular domains of {Hoc} proteins in {\emph{Teequatrovirinae}} subfamily bacteriophages},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t39--t58},
     publisher = {mathdoc},
     volume = {13},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_a3/}
}
TY  - JOUR
AU  - A. A. Zimin
AU  - G. V. Mikoulinskaia
AU  - L. F. Nigmatullina
AU  - N. N. Nazipova
TI  - Comparative analysis of amino acid sequences in particular domains of Hoc proteins in \emph{Teequatrovirinae} subfamily bacteriophages
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - t39
EP  - t58
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_a3/
LA  - en
ID  - MBB_2018_13_a3
ER  - 
%0 Journal Article
%A A. A. Zimin
%A G. V. Mikoulinskaia
%A L. F. Nigmatullina
%A N. N. Nazipova
%T Comparative analysis of amino acid sequences in particular domains of Hoc proteins in \emph{Teequatrovirinae} subfamily bacteriophages
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P t39-t58
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_a3/
%G en
%F MBB_2018_13_a3
A. A. Zimin; G. V. Mikoulinskaia; L. F. Nigmatullina; N. N. Nazipova. Comparative analysis of amino acid sequences in particular domains of Hoc proteins in \emph{Teequatrovirinae} subfamily bacteriophages. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018), pp. t39-t58. http://geodesic.mathdoc.fr/item/MBB_2018_13_a3/

[1] Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”, Nucleic Acids Res., 25 (1997), 3389–3402 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/25.17.3389'>10.1093/nar/25.17.3389</ext-link>

[2] Basic Local Alignment Search Tool (accessed 12.11.2012) <ext-link ext-link-type='uri' href='http://blast.ncbi.nlm.nih.gov/Blast.cgi'>http://blast.ncbi.nlm.nih.gov/Blast.cgi</ext-link>

[3] Balter M., “Virology. Evolution on life's fringes”, Science, 289 (2000), 1866–1867 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.289.5486.1866'>10.1126/science.289.5486.1866</ext-link>

[4] Bateman A., Eddy S. R., Chothia C., “Members of the immunoglobulin superfamily in bacteria”, Protein Sci., 5:9 (1996), 1939–1941 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/pro.5560050923'>10.1002/pro.5560050923</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1416621'>1416621</ext-link>

[5] Bateman A., Eddy S. R., Mesyanzhinov V. V., “A member of the immunoglobulin superfamily in bacteriophage T4”, Virus Genes, 14 (1997), 163–165 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1007977503658'>10.1023/A:1007977503658</ext-link>

[6] Bork P., Holm L., Sander C., “The immunoglobulin fold. Structural classification, sequence patterns and common core”, J. Mol. Biol., 242 (1994), 309–320

[7] Dabrowska K., Zembala M., Boratynski J., Switala-Jelen K., Wietrzyk J., Opolski A., Szczaurska K., Kujawa M., Godlewska J., Gorski A., “Hoc protein regulates the biological effects of T4 phage in mammals”, Arch. Microbiol., 187:6 (2007), 489–498 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00203-007-0216-y'>10.1007/s00203-007-0216-y</ext-link>

[8] De Bono B., Chothia C., “Exegesis: a procedure to improve gene predictions and its use to find immunoglobulin superfamily proteins in the human and mouse genomes”, Nucleic Acids Res., 31:21 (2003), 6096–6103 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkg828'>10.1093/nar/gkg828</ext-link>

[9] Fokine A., Islam M. Z., Zhang Z., Bowman V. D., Rao V. B., Rossmann M. G., “Structure of the three N-terminal immunoglobulin domains of the highly immunogenic outer capsid protein from a T4-like bacteriophage”, J. Virol., 85:16 (2011), 8141–8148 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/JVI.00847-11'>10.1128/JVI.00847-11</ext-link>

[10] Fokine A., Leiman P. G., Shneider M. M., Ahvazi B., Boeshans K. M., Steven A. C., Black L. W., Mesyanzhinov V. V., Rossmann M. G., “Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry”, Proc. Nat. Acad. Sci. USA, 102 (2005), 7163–7168 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0502164102'>10.1073/pnas.0502164102</ext-link>

[11] Fong S., Hamill S. J., Proctor M., Freund S. M., Benian G. M., Chothia C., Bycroft M., Clarke J., “Structure and stability of an immunoglobulin superfamily domain from twitchin, a muscle protein of the nematode Caenorhabditis elegans”, J. Mol. Biol., 264:3 (1996), 624–639 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jmbi.1996.0665'>10.1006/jmbi.1996.0665</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1419720'>1419720</ext-link>

[12] Halaby D. M., Poupon A., Mornon J., “The immunoglobulin fold family: sequence analysis and 3D structure comparisons”, Protein Eng., 12 (1999), 563–571 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/protein/12.7.563'>10.1093/protein/12.7.563</ext-link>

[13] Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J., “Multiple sequence alignment with Clustal X”, Trends Biochem. Sci., 23 (1998), 403–405 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0968-0004(98)01285-7'>10.1016/S0968-0004(98)01285-7</ext-link>

[14] Jing H., Takagi J., Liu J. H., Lindgren S., Zhang R. G., Joachimiak A., Wang J. H., Springer T. A., “Archaeal surface layer proteins contain beta propeller, PKD, and beta helix domains and are related to metazoan cell surface proteins”, Structure, 10 (2002), 1453–1464 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0969-2126(02)00840-7'>10.1016/S0969-2126(02)00840-7</ext-link>

[15] ICTV Virus Taxonomy, 2011 Release (current), (accessed 12.11.2012) <ext-link ext-link-type='uri' href='http://ictvonline.org/virusTaxonomy.asp?version=2011'>http://ictvonline.org/virusTaxonomy.asp?version=2011</ext-link>

[16] Ishii T., Yamaguchi Y., Yanagida M., “Binding of the structural protein Soc to the head shell of bacteriophage T4”, J. Mol. Biol., 120 (1978), 533–544 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-2836(78)90352-2'>10.1016/0022-2836(78)90352-2</ext-link>

[17] Ishii T., Yanagida M., “Molecular organization of the shell of the T-even bacteriophage head”, J. Mol. Biol., 97 (1975), 655–660 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0022-2836(75)80065-9'>10.1016/S0022-2836(75)80065-9</ext-link>

[18] Ishii T., Yanagida M., “The two dispensable structural proteins (Soc and Hoc) of the T4 phage capsid; their purification and properties, isolation and characterization of the defective mutants, and their binding with the defective heads in vitro”, J. Mol. Biol., 109 (1977), 487–514 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0022-2836(77)80088-0'>10.1016/S0022-2836(77)80088-0</ext-link>

[19] Kadyrov F. A., Shlyapnikov M. G., Kryukov V. M., “A phage T4 site-specific endonuclease, SegE, is responsible for a non-reciprocal genetic exchange between T-even-related phages”, FEBS Lett., 415:1 (1997), 75–80 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0014-5793(97)01098-3'>10.1016/S0014-5793(97)01098-3</ext-link>

[20] Lavigne R., Darius P., Summer E. J., Seto D., Mahadevan P., Nilsson A. S., Ackermann H. W., Kropinski A. M., “Classification of Myoviridae bacteriophages using protein sequence similarity”, BMC Microbiol., 9 (2009), 224 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1471-2180-9-224'>10.1186/1471-2180-9-224</ext-link>

[21] Lawrence J. G., Hatfull G. F., Hendrix R. W., “Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches”, J. Bacteriol., 184 (2002), 4891–4905 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/JB.184.17.4891-4905.2002'>10.1128/JB.184.17.4891-4905.2002</ext-link>

[22] Rohwer F., Edwards R., “The phage proteomic tree: a genome-based taxonomy for phage”, J. Bacteriol., 184:16 (2002), 4529–4535 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/JB.184.16.4529-4535.2002'>10.1128/JB.184.16.4529-4535.2002</ext-link>

[23] Ross P. D., Black L. W., Bisher M. E., Steven A. C., “Assembly-dependent conformational changes in a viral capsid protein. Calorimetric comparison of successive conformational states of the gp23 surface lattice of bacteriophage T4”, J. Mol. Biol., 183 (1985), 353–364 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-2836(85)90006-3'>10.1016/0022-2836(85)90006-3</ext-link>

[24] Sathaliyawala T., Islam M. Z., Li Q., Fokine A., Rossmann M. G., Rao V. B., “Functional analysis of the highly antigenic outer capsid protein, Hoc, a virus decoration protein from T4-like bacteriophages”, Mol. Microbiol., 77:2 (2010), 444–455 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-2958.2010.07219.x'>10.1111/j.1365-2958.2010.07219.x</ext-link>

[25] Susskind M. M., Botstein D., “Molecular genetics of bacteriophage”, Microbiol. Rev., 42 (1978), 385–413

[26] Tamura K., Dudley J., Nei M., Kumar S., “MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0”, Mol. Biol. Evol., 24 (2007), 1596–1599 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/molbev/msm092'>10.1093/molbev/msm092</ext-link>

[27] Teichmann S. A., Chothia C., “Immunoglobulin superfamily proteins in Caenorhabditis elegans”, J. Mol. Biol., 296:5 (2000), 1367–1383 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jmbi.1999.3497'>10.1006/jmbi.1999.3497</ext-link>

[28] Vogel C., Teichmann S. A., Chothia C., “The immunoglobulin superfamily in Drosophila melanogaster and Caenorhabditis elegans and the evolution of complexity”, Development, 130:25 (2003), 6317–6328 <ext-link ext-link-type='doi' href='https://doi.org/10.1242/dev.00848'>10.1242/dev.00848</ext-link>

[29] Yamaguchi Y., Yanagida M., “Head shell protein hoc alters the surface charge of bacteriophage T4. Composite slab gel electrophoresis of phage T4 and related particles”, J. Mol. Biol., 141 (1980), 175–193 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-2836(80)90384-8'>10.1016/0022-2836(80)90384-8</ext-link>