On the choice of force fields for studying the molecular dynamics of ion peptides and their dimers
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018), pp. t29-t38.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents comparative data on the impact of force-fields AMBER (ff03, ff99SB, and ff96) on the results of molecular dynamics experiments with dimeric molecules formed by ion-peptide $\mathrm{NH_2\text-(RADA)_4\text-COOH}$ in the $\beta$-conformation at two temperatures (300 K and 320 K). It is shown that an MD simulation in explicit water environment is the most informative approach. The use of different force-fields has a significant influence on the stability of the initial molecular conformation of the peptide over time. Finally, the simulation in ff99SB environment provides significant stability of antiparallel $\beta$-structure of the dimer at 300 K, while ff96 not only ensures the highest stability of the initial b-peptide conformation at higher temperatures, but also enhances the retention of antiparallel $\beta$-conformation, which determines the ability of $\mathrm{NH_2\text-(RADA)_4\text-COOH}$ peptides to self-organization.
@article{MBB_2018_13_a2,
     author = {A. V. Danilkovich and D. A. Tikhonov and E. V. Sobolev and T. E. Shadrina and I. P. Udovichenko},
     title = {On the choice of force fields for studying the molecular dynamics of ion peptides and their dimers},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t29--t38},
     publisher = {mathdoc},
     volume = {13},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_a2/}
}
TY  - JOUR
AU  - A. V. Danilkovich
AU  - D. A. Tikhonov
AU  - E. V. Sobolev
AU  - T. E. Shadrina
AU  - I. P. Udovichenko
TI  - On the choice of force fields for studying the molecular dynamics of ion peptides and their dimers
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - t29
EP  - t38
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_a2/
LA  - en
ID  - MBB_2018_13_a2
ER  - 
%0 Journal Article
%A A. V. Danilkovich
%A D. A. Tikhonov
%A E. V. Sobolev
%A T. E. Shadrina
%A I. P. Udovichenko
%T On the choice of force fields for studying the molecular dynamics of ion peptides and their dimers
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P t29-t38
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_a2/
%G en
%F MBB_2018_13_a2
A. V. Danilkovich; D. A. Tikhonov; E. V. Sobolev; T. E. Shadrina; I. P. Udovichenko. On the choice of force fields for studying the molecular dynamics of ion peptides and their dimers. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018), pp. t29-t38. http://geodesic.mathdoc.fr/item/MBB_2018_13_a2/

[1] Van Gunsteren W. F., Dolenc J., Mark A. E., “Molecular simulation as an aid to experimentalists”, Current Opinions in Structural Biology, 18 (2008), 149–153 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.sbi.2007.12.007'>10.1016/j.sbi.2007.12.007</ext-link>

[2] Mackerell A. D., “Empirical force fields for biological macromolecules: overview and issues”, Journal of Computational Chemistry, 25 (2004), 1584–1604 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcc.20082'>10.1002/jcc.20082</ext-link>

[3] Jorgensen W. L., Tirado-Rives J., “Potential energy functions for atomic-level simulations of water and organic and biomolecular systems”, Proceedings of National Academy of Sciences of the USA, 102 (2005), 6665–6670 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0408037102'>10.1073/pnas.0408037102</ext-link>

[4] Van Gunsteren W. F., Bakowies D., Baron R., et al., “Biomolecular modeling: goals, problems, perspectives”, Angewandte Chemie International Edition, 45 (2006), 4064–4092 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/anie.200502655'>10.1002/anie.200502655</ext-link>

[5] Sorin E. J., Rhee Y. M., Shirts M. R., Pande V. S., “The solvation interface is a determining factor in peptide conformational preferences”, Journal of Molecular Biology, 356 (2006), 248–256 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jmb.2005.11.058'>10.1016/j.jmb.2005.11.058</ext-link>

[6] Hess B., van der Vegt N. F. A., “Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force fields and water models”, Journal of Physical Chemistry B, 110 (2006), 17616–17626 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp0641029'>10.1021/jp0641029</ext-link>

[7] Reif M. M., Krutler V., Kastenholz M. A., et al., “Molecular dynamics simulations of a reversibly folding $\beta$-heptapeptide in methanol: influence of the treatment of long-range electrostatic interactions”, Journal of Physical Chemistry B, 113 (2009), 3112–3128 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp807421a'>10.1021/jp807421a</ext-link>

[8] Duan Y., Wu C., Chowdhury S., et al., “A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations”, Journal of Computational Chemistry, 24 (2003), 1999–2012 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcc.10349'>10.1002/jcc.10349</ext-link>

[9] Hornak V., Abel R., Okur A., et al., “Comparison of multiple AMBER force fields and development of improved protein backbone parameters”, Proteins, 65 (2006), 712–725 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/prot.21123'>10.1002/prot.21123</ext-link>

[10] Feig M., MacKerell A., Brooks C., “Force field influence on the observation of $pi$-helical protein structures in molecular dynamics simulations”, Journal of Computational Chemistry B, 107 (2003), 2831–2836

[11] Oostenbrink C., Villa A., Mark A. E., Gunsteren W. F. V., “A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6”, Journal of Computational Chemistry, 25 (2004), 1656–1676 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcc.20090'>10.1002/jcc.20090</ext-link>

[12] Kaminski G., Friesner R., Tirado-Rives J., Jorgensen W., “Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides”, Journal of Physical Chemistry B, 105 (2001), 6474–6487 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp003919d'>10.1021/jp003919d</ext-link>

[13] Rueda M., Ferrer-Costa C., Meyer T., et al., “A consensus view of protein dynamics”, Proceedings of National Academy of Sciences of the USA, 104 (2007), 796–801 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0605534104'>10.1073/pnas.0605534104</ext-link>

[14] Ferrara P., Apostolakis J., Caflisch A., “Thermodynamics and kinetics of folding of two model peptides investigated by molecular dynamics simulations”, Journal of Physical Chemistry B, 104 (2000), 5000–5010 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp994157t'>10.1021/jp994157t</ext-link>

[15] Fersht A. R., Daggett V., “Protein folding and unfolding at atomic resolution”, Cell., 108 (2002), 573–582 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0092-8674(02)00620-7'>10.1016/S0092-8674(02)00620-7</ext-link>

[16] Simmerling C., Strockbine B., Roitberg A. E., “All-atom structure prediction and folding simulations of a stable protein”, Journal of American Chemical Society, 124 (2002), 11258–11259 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ja0273851'>10.1021/ja0273851</ext-link>

[17] Snow C. D., Nguyen H., Pande V. S., Gruebele M., “Absolute comparison of simulated and experimental protein-folding dynamics molecular dynamics simulations”, Nature, 420 (2002), 102–106 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature01160'>10.1038/nature01160</ext-link>

[18] Snow C. D., Zagrovic B., Pande V. S., “The Trp cage folding kinetics and unfolded state topology via molecular dynamics simulations”, Journal of American Chemical Society, 124 (2002), 14548–14549 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ja028604l'>10.1021/ja028604l</ext-link>

[19] Wu X., Brooks B. R., “$\beta$-hairpin folding mechanism of a nineresidue peptide revealed from molecular dynamics simulations in explicit water”, Biophysical Journal, 86 (2002), 1946–1958

[20] Gnanakaran S., Nymeyer H., Portman J., et. al., “Peptide folding simulations”, Current Opinions in Structural Biology, 13 (2003), 168–174 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0959-440X(03)00040-X'>10.1016/S0959-440X(03)00040-X</ext-link>

[21] Zhang S., “Fabrication of novel biomaterials through molecular self-assembly”, Nature Biotechnology, 21 (2003), 1171–1178 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nbt874'>10.1038/nbt874</ext-link>

[22] Munoz V., Serrano L., “Elucidating the folding problem of helical peptides using empirical parameters”, Nature Structural and Molecular Biology, 1 (1994), 399–409 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nsb0694-399'>10.1038/nsb0694-399</ext-link>

[23] Macindoe G., Mavridis L., Venkatraman V., et. al., “HexServer: an FFT-based protein docking server powered by graphics processors”, Nucleic Acids Research, 38 (2010), 445–449 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkq311'>10.1093/nar/gkq311</ext-link>

[24] Tovchigrechko A., Vakser I. A., “Development and testing of an automated approach to protein docking”, Proteins, 60:2 (2005), 296–301 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/prot.20573'>10.1002/prot.20573</ext-link>

[25] HyperChem$^\circledR$ Computational Chemistry. Practical Guide – Theory and Method, HC 70-00-04-00, Hypercube Inc, Gainesville, 2002, 350 pp.

[26] Case D. A., Cheatham T. E. III, Darden T., et. al., “The Amber biomolecular simulation programs”, Journal of Computational Chemistry, 26 (2005), 1668–1688 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcc.20290'>10.1002/jcc.20290</ext-link>

[27] Jorgensen W. L., Chandrasekhar J., Madura J. D., et. al., “Comparison of simple potential functions for simulating liquid water”, Journal of Chemical Physics, 79 (1983), 926–935 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.445869'>10.1063/1.445869</ext-link>

[28] Kollman P. A., Dixon R., Cornell W., et. al., “The development/application of a “minimalist” organic/biochemical molecular mechanic force field using a combination of ab initio calculations and experimental data”, Computer Simulation of Biomolecular Systems, v. 3, eds. van Gunsteren W. F., Weiner P. K., Wilkinson A. J., KLUWER/ESCOM, Dordrecht, 1997, 83–96 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-94-017-1120-3_2'>10.1007/978-94-017-1120-3_2</ext-link>

[29] Lee M. C., Duan Y., “Distinguish protein decoys by using a scoring function based on a new Amber force field, short molecular dynamics simulations, and the generalized Born solvent model”, Proteins, 55 (2004), 620–634 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/prot.10470'>10.1002/prot.10470</ext-link>

[30] Kabsch W., Sander C., “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features”, Biopolymers, 12 (1983), 2577–2637 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/bip.360221211'>10.1002/bip.360221211</ext-link>

[31] Onufriev A., Bashford D., Case D. A., “Modification of the Generalized Born Model Suitable for Macromolecules”, Journal of Physical Chemistry B, 104:15 (2000), 3712–3720 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp994072s'>10.1021/jp994072s</ext-link>