Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_a1, author = {D. A. Tikhonov and L. I. Kulikova and A. V. Efimov}, title = {Analysis of torsion angles between helical axes in pairs of helices in protein molecules}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t17--t28}, publisher = {mathdoc}, volume = {13}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_a1/} }
TY - JOUR AU - D. A. Tikhonov AU - L. I. Kulikova AU - A. V. Efimov TI - Analysis of torsion angles between helical axes in pairs of helices in protein molecules JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - t17 EP - t28 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_a1/ LA - en ID - MBB_2018_13_a1 ER -
%0 Journal Article %A D. A. Tikhonov %A L. I. Kulikova %A A. V. Efimov %T Analysis of torsion angles between helical axes in pairs of helices in protein molecules %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P t17-t28 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_a1/ %G en %F MBB_2018_13_a1
D. A. Tikhonov; L. I. Kulikova; A. V. Efimov. Analysis of torsion angles between helical axes in pairs of helices in protein molecules. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018), pp. t17-t28. http://geodesic.mathdoc.fr/item/MBB_2018_13_a1/
[1] Tikhonov D.A., Kulikova L.I., Efimov A.V., “Statistical analysis of the internal distances of helical pairs in protein molecules”, Mathematical Biology and Bioinformatics, 11:2 (2016), 170–190 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17537/2016.11.170'>http://dx.doi.org/10.17537/2016.11.170</ext-link>
[2] Tikhonov D.A., Kulikova L.I., Efimov A.V., “The study of interhelical angles in the structural motifs formed by two helices”, Mathematical Biology and Bioinformatics, 12:1 (2017), 83–101 (in Russ.) <ext-link ext-link-type='doi' href='http://dx.doi.org/10.17537/2017.12.83'>http://dx.doi.org/10.17537/2017.12.83</ext-link>
[3] Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E., “The Protein Data Bank”, Nucleic Acids Research, 28 (2000), 235–242 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/28.1.235'>10.1093/nar/28.1.235</ext-link>
[4] Crick F. H. C., “The Packing of a-helices: simple coiled-coils”, Acta Crystallographica, 6 (1953), 689–697 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0365110X53001964'>10.1107/S0365110X53001964</ext-link>
[5] Lee H. S., Choi J., Yoon S., “QHELIX: A Computational tool for the improved measurement of inter-helical angles in proteins”, Protein, 26 (2007), 556–561 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1007/s10930-007-9097-9'>http://dx.doi.org/10.1007/s10930-007-9097-9</ext-link>
[6] Walther D., Eisenhaber F., Argos P., “Principles of helix-helix packing in proteins: the helical lattice superposition model”, Molecular Biology, 255 (1996), 536–553 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jmbi.1996.0044'>10.1006/jmbi.1996.0044</ext-link>
[7] Chothia C., Levitt M., Richardson D., “Structure of proteins: packing of $\alpha$-helices and pleated sheets”, Proc. Natl. Acad. Sci., 74 (1977), 4130–4134 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.74.10.4130'>10.1073/pnas.74.10.4130</ext-link>
[8] Chothia C., Levitt M., Richardson D., “Helix to helix packing in proteins”, Molecular Biology, 145 (1981), 215–250 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-2836(81)90341-7'>10.1016/0022-2836(81)90341-7</ext-link>
[9] Levitt M., Chothia C., “Structural patterns in globular proteins”, Nature, 261 (1976), 552–558 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/261552a0'>10.1038/261552a0</ext-link>
[10] Efimov A. V., “Standard structures in proteins”, Prog. Biophys. Molec. Biol., 60 (1993), 201–239 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0079-6107(93)90015-C'>10.1016/0079-6107(93)90015-C</ext-link>
[11] Gordeev A. B., Kargatov A. M., Efimov A. V., “PCBOST: Protein classification based on structural trees”, Biochemical and Biophysical Research Communications, 397 (2010), 470–471 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.bbrc.2010.05.136'>10.1016/j.bbrc.2010.05.136</ext-link>
[12] Efimov A. V., “Super-secondary structures and modeling of protein folds”, Methods in Molecular Biology, 932, ed. Kister A. E., Humana Press, Clifton, 2013, 177–189 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-1-62703-065-6_11'>10.1007/978-1-62703-065-6_11</ext-link>
[13] Brazhnikov E. V., Efimov A. V., “Structure of $\alpha$-$\alpha$-hairpins with short connections in globular proteins”, Molecular Biology, 35:1 (2001), 89–97 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1004859003221'>10.1023/A:1004859003221</ext-link>
[14] Kabsch W., Sander C., “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features”, Biopolymers, 22:12 (1983), 2577–2637 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/bip.360221211'>10.1002/bip.360221211</ext-link>
[15] Kabsch W., “A solution for the best rotation to relate two sets of vectors”, Acta Crystallographica, 32 (1976), 922–923 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0567739476001873'>10.1107/S0567739476001873</ext-link>
[16] Kabsch W., “A discussion of the solution for the best rotation to relate two sets of vectors”, Acta Crystallographica, 34 (1978), 827–828 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0567739478001680'>10.1107/S0567739478001680</ext-link>
[17] Legland D., MatGeom: Matlab geometry toolbox for 2D/3D geometric computing, (accessed 11.05.2017) <ext-link ext-link-type='uri' href='http://github.com/dlegland/matGeom'>http://github.com/dlegland/matGeom</ext-link>
[18] Calhoun J. R., Kono H., Lahr S., Wang W., DeGrado W. F., Saven J. G., “Computational design and characterization of a monomeric helical dinuclear metalloprotein”, Journal of Molecular Biology, 334:5 (2003), 1101–1115 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jmb.2003.10.004'>10.1016/j.jmb.2003.10.004</ext-link>
[19] Calhoun J. R., Nastri F., Maglio O., Pavone V., Lombardi A., DeGrado W. F., “Artificial diiron proteins: From structure to function”, Peptide Science, 80:2–3 (2005), 264–278 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/bip.20230'>10.1002/bip.20230</ext-link>
[20] Chino M., Maglio O., Nastri F., Pavone V., DeGrado W. F., Lombardi A., “Artificial diiron enzymes with a de novo designed four-helix bundle structure”, European Journal of Inorganic Chemistry, 2015, 3371–3390 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1002/ejic.201500470'>http://dx.doi.org/10.1002/ejic.201500470</ext-link>
[21] Chino M., Leone L., Maglio O., Lombardi A., “Designing Covalently Linked Heterodimeric Four-Helix Bundles”, Methods in Enzymology, 580, 2016, 471–499 <ext-link ext-link-type='doi' href='http://dx.doi.org/10.1016/bs.mie.2016.05.036'>http://dx.doi.org/10.1016/bs.mie.2016.05.036</ext-link>
[22] Trovato A., Seno F., “A new perspective on analysis of helix-helix packing preferences in globular proteins”, Proteins: Structure, Function, Bioinformatics, 55 (2004), 1014–1022 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/prot.20083'>10.1002/prot.20083</ext-link>