Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_3_a7, author = {N. V. Pertsev and B. Yu. Pichugin and A. N. Pichugina}, title = {Application of {M-matrices} for the study of mathematical models of living systems}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t104--t131}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_3_a7/} }
TY - JOUR AU - N. V. Pertsev AU - B. Yu. Pichugin AU - A. N. Pichugina TI - Application of M-matrices for the study of mathematical models of living systems JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - t104 EP - t131 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_3_a7/ LA - en ID - MBB_2018_13_3_a7 ER -
%0 Journal Article %A N. V. Pertsev %A B. Yu. Pichugin %A A. N. Pichugina %T Application of M-matrices for the study of mathematical models of living systems %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P t104-t131 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_3_a7/ %G en %F MBB_2018_13_3_a7
N. V. Pertsev; B. Yu. Pichugin; A. N. Pichugina. Application of M-matrices for the study of mathematical models of living systems. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 3, pp. t104-t131. http://geodesic.mathdoc.fr/item/MBB_2018_13_3_a7/
[1] Gantmacher F. R., The Theory of Matrices, AMS Chelsea Publishing ; American Mathematical Society, 2000, 660 pp. | MR | MR
[2] Voevodin V.V., Kuznetsov Yu.A., Matrices and Calculations, Nauka, M., 1984, 320 pp. (in Russ.) | MR | MR
[3] Bellman R., Introduction to Matrix Theory, Nauka, M., 1976, 352 pp. (in Russ.) | MR | MR
[4] Sevastyanov B.A., Branching Processes, Nauka, M., 1971, 436 pp. (in Russ.) | MR | Zbl | MR | Zbl
[5] Ortega J.M., Rheinboldt W.C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York–London, 1970 | MR | Zbl | MR | Zbl
[6] Berman A., Plemmons R. J., Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979, 340 pp. | MR | Zbl | MR | Zbl
[7] Hale J., Theory of Functional Differential Equations, Springer-Verlag, New York–Heidelberg–Berlin, 1977, 365 pp. | MR | Zbl | MR | Zbl
[8] Kolmanovsky V.B., Nosov V.R., Stability and Periodical Regiments with After-Effect, Nauka, M., 1981, 448 pp. (in Russ.) | MR | MR
[9] Obolenskii A.Y., “Stability of Solutions of Autonomous Wazewski Systems with Delayed Action”, Ukranian Mathematical Journal, 35:5 (1984), 486–492 | DOI | MR | DOI | MR
[10] Volz R., “Stability conditions for systems of linear nonautonomous delay differential equations”, J. Math. Anal. Appl., 120:2 (1986), 584–595 | DOI | MR | Zbl | DOI | MR | Zbl
[11] Gyori I., Pertsev N.V., “On the stability of Equilibrium States of Functional-Differential Equations of Retarded Type Possessing a Mixed Monotone Property”, Doklady Akademii Nauk SSSR, 297:1 (1987), 23–25 (in Russ.)
[12] Demidovich B.P., Lectures on Mathematical Stability Theory, Nauka, M., 1967, 472 pp. (in Russ.) | MR | Zbl | MR | Zbl
[13] Marchuk G.I., Mathematical Models in Immunology, Nauka, M., 1985, 240 pp. (in Russ.) | MR | Zbl | MR | Zbl
[14] Marchuk G.I., Mathematical Models in Immunology. Computational Methods and Experiments, Nauka, M., 1991, 304 pp. (in Russ.) | MR | MR
[15] Els'golts L.I., Norkin S.B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Mathematics in Science and Engineering, Academic Press, 1973 | MR | MR
[16] Nelson P. W., Perelson A. S., “Mathematical analysis of delay differential equation models of HIV-1 infection”, Math. Biosci., 179 (2002), 73–94 | DOI | MR | Zbl | DOI | MR | Zbl
[17] Bocharov G., Chereshnev V., Gainova I., Bazhan S., Bachmetyev B., Argilaguet J., Martinez J., Meyerhans A., “Human Immunodeficiency Virus Infection: from Biological Observations to Mechanistic Mathematical Modelling”, Math. Model. Nat. Phenom., 7:5 (2012), 78–104 | DOI | MR | Zbl | DOI | MR | Zbl
[18] Pawelek K. A., Liu S., Pahlevani F., Rong L., “A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data”, Math. Biosci., 235:1 (2012), 98–109 | DOI | MR | Zbl | DOI | MR | Zbl
[19] Pitchaimani M., Monica C., “Global stability analysis of HIV-1 infection model with three time delays”, J. Appl. Math. Comput., 48 (2015), 293–319 | DOI | MR | Zbl | DOI | MR | Zbl
[20] Wang J., Lang J., Zou X., “Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission”, Nonlinear Analysis: Real World Applications, 34 (2017), 75–96 | DOI | MR | Zbl | DOI | MR | Zbl
[21] Pertsev N.V., “Global solvability and estimates for solutions to the Cauchy problem for the retarded functional differential equations that are used to the model living systems”, Siberian Mathematical Journal, 59:1 (2018), 113–125 | DOI | MR | Zbl | DOI | MR | Zbl
[22] Pertsev N.V., “Discrete-continuous Model of Tuberculosis Spread and Control”, Siberian Journal of Industrial Mathematics, 17:3 (2014), 86–97 (in Russ.) | MR | Zbl | MR | Zbl
[23] Pertsev N.V., “Analysis of Solutions to Mathematical Models of Epidemic Processes with Common Structural properties”, Siberian Journal of Industrial Mathematics, 18:2 (2015), 85–98 (in Russ.) | DOI | MR | Zbl | DOI | MR | Zbl
[24] Romanyukha A.A., Nosova E.A., “Modeling Spread of HIV as Result of Social Maladjustment in Population”, UBS, 34 (2011), 227–253 (in Russ.)
[25] Nosova E.A., “Models of Control and Spread of HIV-infection”, Mat. Biolog. Bioinform., 7:2 (2012), 632–675 (in Russ.) | DOI | DOI
[26] Pertsev N.V., Pichugin B.Yu. , Pichugina A.N., “Analysis of the Asymptotic Behavior Solutions of Some Models of Epidemic Processes”, Mat. Biol. Bioinform., 8:1 (2013), 21–48 (in Russ.) | DOI | DOI
[27] Pichugina A.N., “An Integrodifferential Model of a Population under the Effects of Pollutants”, Siberian Journal of Industrial Mathematics, 7:4 (2004), 130–140 (in Russ.) | MR | Zbl | MR | Zbl
[28] Pertsev N.V., Tsaregorodtseva G.E., “Modeling population dynamics under the influence of harmful substances on the individual reproduction process”, Automation and Remote Control, 72:1 (2011), 129–140 | DOI | MR | Zbl | DOI | MR | Zbl
[29] Romanovskii Yu.M., Stepanova N.V., Chernavsky D.S., Mathematical Biophysics, Nauka, M., 1984, 304 pp. (in Russ.) | MR | MR
[30] Alexandrov A.Yu., Zhabko A.P., “On the Asymptotic Stability of Solutions of Nonlinear Systems with Delay”, Siberian Mathematical Journal, 53:3 (2012), 495–508 (in Russ.) | DOI | MR | DOI | MR
[31] Balandin A.S., Sabatulina T.L., “The Local Stability of a Population Dynamics Model in Conditions of Deleterious Effects”, Sib. Elektron. Mat. Izv., 12 (2015), 610–624 (in Russ.) | DOI | MR | Zbl | DOI | MR | Zbl
[32] Malygina V.V., Mulyukov M.V., “On Local Stability of a Population Dynamics Model with Three Development Stages”, Russ Math., 61:4 (2017), 29–34 | DOI | MR | Zbl | DOI | MR | Zbl
[33] Golubyatnikov V.P., Kirillova N.E., “On Cycles in Models of Functioning of Circular Gene Networks”, Sib. J. Pure and Appl. Math., 18:1 (2018), 54–63 (in Russ.) | DOI | MR | DOI | MR
[34] Bocharov G.A., Marchuk G.I., “Applied problems of mathematical modeling in immunology”, Comput. Math. Math. Phys., 40:12 (2000), 1830–1844 | MR | Zbl | MR | Zbl
[35] Luzyanina T., Sieber J., Engelborghs K., Samaey G., Roose D., “Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL”, Mathematical Biology and Bioinformatics, 12:2 (2017), 496–520 | DOI | DOI