Application of M-matrices for the study of mathematical models of living systems
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 3, pp. t104-t131

Voir la notice de l'article provenant de la source Math-Net.Ru

We present some results of the application of M-matrices to the study the stability problem of the equilibriums of differential equations used in models of living systems. The models of living systems are described by differential equations with several delays, including distributed delay, and by high-dimensional systems of differential equations. To study the stability of the equilibriums the linearization method is used. Emerging systems of linear differential equations have a specific structure of the right-hand parts, which allows to effectively use the properties of M-matrices. As examples, the results of studies of models arising in immunology, epidemiology and ecology are presented.
@article{MBB_2018_13_3_a7,
     author = {N. V. Pertsev and B. Yu. Pichugin and A. N. Pichugina},
     title = {Application of {M-matrices} for the study of mathematical models of living systems},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t104--t131},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_3_a7/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - B. Yu. Pichugin
AU  - A. N. Pichugina
TI  - Application of M-matrices for the study of mathematical models of living systems
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - t104
EP  - t131
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_3_a7/
LA  - en
ID  - MBB_2018_13_3_a7
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A B. Yu. Pichugin
%A A. N. Pichugina
%T Application of M-matrices for the study of mathematical models of living systems
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P t104-t131
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_3_a7/
%G en
%F MBB_2018_13_3_a7
N. V. Pertsev; B. Yu. Pichugin; A. N. Pichugina. Application of M-matrices for the study of mathematical models of living systems. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 3, pp. t104-t131. http://geodesic.mathdoc.fr/item/MBB_2018_13_3_a7/

[1] Gantmacher F. R., The Theory of Matrices, AMS Chelsea Publishing ; American Mathematical Society, 2000, 660 pp. | MR | MR

[2] Voevodin V.V., Kuznetsov Yu.A., Matrices and Calculations, Nauka, M., 1984, 320 pp. (in Russ.) | MR | MR

[3] Bellman R., Introduction to Matrix Theory, Nauka, M., 1976, 352 pp. (in Russ.) | MR | MR

[4] Sevastyanov B.A., Branching Processes, Nauka, M., 1971, 436 pp. (in Russ.) | MR | Zbl | MR | Zbl

[5] Ortega J.M., Rheinboldt W.C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York–London, 1970 | MR | Zbl | MR | Zbl

[6] Berman A., Plemmons R. J., Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979, 340 pp. | MR | Zbl | MR | Zbl

[7] Hale J., Theory of Functional Differential Equations, Springer-Verlag, New York–Heidelberg–Berlin, 1977, 365 pp. | MR | Zbl | MR | Zbl

[8] Kolmanovsky V.B., Nosov V.R., Stability and Periodical Regiments with After-Effect, Nauka, M., 1981, 448 pp. (in Russ.) | MR | MR

[9] Obolenskii A.Y., “Stability of Solutions of Autonomous Wazewski Systems with Delayed Action”, Ukranian Mathematical Journal, 35:5 (1984), 486–492 | DOI | MR | DOI | MR

[10] Volz R., “Stability conditions for systems of linear nonautonomous delay differential equations”, J. Math. Anal. Appl., 120:2 (1986), 584–595 | DOI | MR | Zbl | DOI | MR | Zbl

[11] Gyori I., Pertsev N.V., “On the stability of Equilibrium States of Functional-Differential Equations of Retarded Type Possessing a Mixed Monotone Property”, Doklady Akademii Nauk SSSR, 297:1 (1987), 23–25 (in Russ.)

[12] Demidovich B.P., Lectures on Mathematical Stability Theory, Nauka, M., 1967, 472 pp. (in Russ.) | MR | Zbl | MR | Zbl

[13] Marchuk G.I., Mathematical Models in Immunology, Nauka, M., 1985, 240 pp. (in Russ.) | MR | Zbl | MR | Zbl

[14] Marchuk G.I., Mathematical Models in Immunology. Computational Methods and Experiments, Nauka, M., 1991, 304 pp. (in Russ.) | MR | MR

[15] Els'golts L.I., Norkin S.B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Mathematics in Science and Engineering, Academic Press, 1973 | MR | MR

[16] Nelson P. W., Perelson A. S., “Mathematical analysis of delay differential equation models of HIV-1 infection”, Math. Biosci., 179 (2002), 73–94 | DOI | MR | Zbl | DOI | MR | Zbl

[17] Bocharov G., Chereshnev V., Gainova I., Bazhan S., Bachmetyev B., Argilaguet J., Martinez J., Meyerhans A., “Human Immunodeficiency Virus Infection: from Biological Observations to Mechanistic Mathematical Modelling”, Math. Model. Nat. Phenom., 7:5 (2012), 78–104 | DOI | MR | Zbl | DOI | MR | Zbl

[18] Pawelek K. A., Liu S., Pahlevani F., Rong L., “A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data”, Math. Biosci., 235:1 (2012), 98–109 | DOI | MR | Zbl | DOI | MR | Zbl

[19] Pitchaimani M., Monica C., “Global stability analysis of HIV-1 infection model with three time delays”, J. Appl. Math. Comput., 48 (2015), 293–319 | DOI | MR | Zbl | DOI | MR | Zbl

[20] Wang J., Lang J., Zou X., “Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission”, Nonlinear Analysis: Real World Applications, 34 (2017), 75–96 | DOI | MR | Zbl | DOI | MR | Zbl

[21] Pertsev N.V., “Global solvability and estimates for solutions to the Cauchy problem for the retarded functional differential equations that are used to the model living systems”, Siberian Mathematical Journal, 59:1 (2018), 113–125 | DOI | MR | Zbl | DOI | MR | Zbl

[22] Pertsev N.V., “Discrete-continuous Model of Tuberculosis Spread and Control”, Siberian Journal of Industrial Mathematics, 17:3 (2014), 86–97 (in Russ.) | MR | Zbl | MR | Zbl

[23] Pertsev N.V., “Analysis of Solutions to Mathematical Models of Epidemic Processes with Common Structural properties”, Siberian Journal of Industrial Mathematics, 18:2 (2015), 85–98 (in Russ.) | DOI | MR | Zbl | DOI | MR | Zbl

[24] Romanyukha A.A., Nosova E.A., “Modeling Spread of HIV as Result of Social Maladjustment in Population”, UBS, 34 (2011), 227–253 (in Russ.)

[25] Nosova E.A., “Models of Control and Spread of HIV-infection”, Mat. Biolog. Bioinform., 7:2 (2012), 632–675 (in Russ.) | DOI | DOI

[26] Pertsev N.V., Pichugin B.Yu. , Pichugina A.N., “Analysis of the Asymptotic Behavior Solutions of Some Models of Epidemic Processes”, Mat. Biol. Bioinform., 8:1 (2013), 21–48 (in Russ.) | DOI | DOI

[27] Pichugina A.N., “An Integrodifferential Model of a Population under the Effects of Pollutants”, Siberian Journal of Industrial Mathematics, 7:4 (2004), 130–140 (in Russ.) | MR | Zbl | MR | Zbl

[28] Pertsev N.V., Tsaregorodtseva G.E., “Modeling population dynamics under the influence of harmful substances on the individual reproduction process”, Automation and Remote Control, 72:1 (2011), 129–140 | DOI | MR | Zbl | DOI | MR | Zbl

[29] Romanovskii Yu.M., Stepanova N.V., Chernavsky D.S., Mathematical Biophysics, Nauka, M., 1984, 304 pp. (in Russ.) | MR | MR

[30] Alexandrov A.Yu., Zhabko A.P., “On the Asymptotic Stability of Solutions of Nonlinear Systems with Delay”, Siberian Mathematical Journal, 53:3 (2012), 495–508 (in Russ.) | DOI | MR | DOI | MR

[31] Balandin A.S., Sabatulina T.L., “The Local Stability of a Population Dynamics Model in Conditions of Deleterious Effects”, Sib. Elektron. Mat. Izv., 12 (2015), 610–624 (in Russ.) | DOI | MR | Zbl | DOI | MR | Zbl

[32] Malygina V.V., Mulyukov M.V., “On Local Stability of a Population Dynamics Model with Three Development Stages”, Russ Math., 61:4 (2017), 29–34 | DOI | MR | Zbl | DOI | MR | Zbl

[33] Golubyatnikov V.P., Kirillova N.E., “On Cycles in Models of Functioning of Circular Gene Networks”, Sib. J. Pure and Appl. Math., 18:1 (2018), 54–63 (in Russ.) | DOI | MR | DOI | MR

[34] Bocharov G.A., Marchuk G.I., “Applied problems of mathematical modeling in immunology”, Comput. Math. Math. Phys., 40:12 (2000), 1830–1844 | MR | Zbl | MR | Zbl

[35] Luzyanina T., Sieber J., Engelborghs K., Samaey G., Roose D., “Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL”, Mathematical Biology and Bioinformatics, 12:2 (2017), 496–520 | DOI | DOI