Computer modeling of fluid flow through the heart valve bioprosthesis
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 337-347.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes the features of in silico simulation of fluid flows of variable viscosity in the study of prosthetic heart valves. Computer modeling and its verification were performed on the example of the bioprosthesis "UniLine" (Russia) used in modern cardio-surgical practice. A spatial model of the object of investigation was obtained by the method of computer microtomography, followed by the reconstruction of the primitive grid in two-dimensional sections. In the numerical experiment, the immersed boundary method was used. Herein the interaction of a solid and a liquid as well as the impact of mechanics of deformation of the elements of the prosthesis, such as the winged apparatus, were taken into account. Verification of the calculation algorithm was performed in the pulsating flow setup in conditions of simulating the physiological parameters of hydrodynamics similar to those used in silico. In general, the results of the simulation are consistent with the quantitative and qualitative data of the hydrodynamic experiment. Thus, in the numerical simulation, a pressure gradient of $3.0 \pm 1.1$ mmHg was obtained, an effective orifice area of $2.8$ cm$^2$, a regurgitation volume of $0.1$ ml/min. The experimental evaluation has shown the similar indicators: $6.5 \pm 3.6$ mmHg, $2.3 \pm 0.6$ cm$^2$, $3.1 \pm 1.7$ ml/min, respectively. The described method demonstrates its promise and can be used in design and research tasks.
@article{MBB_2018_13_2_a9,
     author = {K. Yu. Klyshnikov and E. A. Ovcharenko and A. V. Batranin and D. A. Dolgov and Yu. N. Zakharov and K. S. Ivanov and Yu. A. Kudryavtseva and Yu. I. Shokin and L. S. Barbarash},
     title = {Computer modeling of fluid flow through the heart valve bioprosthesis},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {337--347},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a9/}
}
TY  - JOUR
AU  - K. Yu. Klyshnikov
AU  - E. A. Ovcharenko
AU  - A. V. Batranin
AU  - D. A. Dolgov
AU  - Yu. N. Zakharov
AU  - K. S. Ivanov
AU  - Yu. A. Kudryavtseva
AU  - Yu. I. Shokin
AU  - L. S. Barbarash
TI  - Computer modeling of fluid flow through the heart valve bioprosthesis
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - 337
EP  - 347
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a9/
LA  - ru
ID  - MBB_2018_13_2_a9
ER  - 
%0 Journal Article
%A K. Yu. Klyshnikov
%A E. A. Ovcharenko
%A A. V. Batranin
%A D. A. Dolgov
%A Yu. N. Zakharov
%A K. S. Ivanov
%A Yu. A. Kudryavtseva
%A Yu. I. Shokin
%A L. S. Barbarash
%T Computer modeling of fluid flow through the heart valve bioprosthesis
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P 337-347
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a9/
%G ru
%F MBB_2018_13_2_a9
K. Yu. Klyshnikov; E. A. Ovcharenko; A. V. Batranin; D. A. Dolgov; Yu. N. Zakharov; K. S. Ivanov; Yu. A. Kudryavtseva; Yu. I. Shokin; L. S. Barbarash. Computer modeling of fluid flow through the heart valve bioprosthesis. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 337-347. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a9/

[1] Barbarash L. S., A. M. Karaskov, M. L. Semenovskii, I. Yu. Zhuravleva, Yu. N. Odarenko, P. A. Vavilov, A. V. Nokhrin, D. A. Astapov, “Bioprotezy klapanov serdtsa v Rossii: opyt trekh klinik”, Patologiya krovoobrascheniya i kardiokhirurgiya, 2011, no. 2, 21–26

[2] L. A. Bokeriya, R. G. Gudkova, Serdechno-sosudistaya khirurgiya-2014: bolezni i vrozhdennye anomalii sistemy krovoobrascheniya, Izd-vo NTsSSKh im. A.N. Bakuleva, M., 2015, 225 pp.

[3] T. Arai, T. Lefevre, T. Hovasse, M. C. Morice, P. Garot, H. Benamer, T. Unterseeh, K. Hayashida, Y. Watanabe, E. Bouvier et al., “Comparison of Edwards SAPIEN 3 versus SAPIEN XT in transfemoral transcatheter aortic valve implantation: Difference of valve selection in the real world”, J. Cardiol., 69:3 (2017), 565–569 | DOI

[4] M. Moore, G. R. Barnhart, W. R. Chitwood Jr, J. A. Rizzo, C. Gunnarsson, S. R. Palli, E. A. Grossi, “The economic value of INTUITY in aortic valve replacement”, J. Med Econ., 19:10 (2016), 1011–1017 | DOI

[5] S. V. Evdokimov, A. V. Baulin, M. E. Evdokimov, E. S. Serov, G. I. Baryaev, I. A. Golovin, I. V. Efimova, A. S. Seredin, “Nekotorye osobennosti organizatsii provedeniya khirurgicheskogo eksperimenta na svinyakh”, Uspekhi sovremennogo estestvoznaniya, 1:5 (2015), 756–759

[6] V. F. Khizhenok, S. V. Shilko, “Deformatsionno-prochnostnye kharakteristiki polimernogo proteza klapana serdtsa”, Rossiiskii zhurnal biomekhaniki, 10:4 (2006), 52–61

[7] F. D. Gaetano, P. Bagnoli, A. Zaffora, A. Pandolfi, M. Serrani, J. Brubert, M. L. Costantino, “A newly developed tri-leaflet polymeric heart valve prosthesis”, Journal of mechanics in medicine and biology, 15:2 (2015), 1540009 | DOI

[8] L. P. Dasi, H. A. Simon, P. Sucosky, A. P. Yoganathan, “Fluid mechanics of artificial heart valves”, Clinical and experimental pharmacology physiology, 36:2 (2009), 225–237 | DOI

[9] Bao S., “Mechanical stress”, Handb. Clin. Neurol., 131, 2015, 367–396 | DOI

[10] L. A. Skopin I. I. Bokeriya, M. A. Sazonov, E. N. Tumaev, “Mekhanicheskoe napryazhenie v stvorkakh mitralnogo klapana i bioproteza v mitralnoi pozitsii. Vliyanie geometrii fibroznogo koltsa na velichinu napryazheniya stvorok”, Klinicheskaya fiziologiya krovoobrascheniya, 2 (2008), 73–80

[11] E. Weinberg, Dynamic simulation of heart mitral valve with transversely isotropic material model, Massachusetts Institute of Technology, 2005, 76 pp.

[12] S. V. Shilko, V. F. Khizhenok, S. P. Salivonchik, “Biomekhanicheskii analiz adekvatnosti protezirovaniya klapanov serdtsa”, Rossiiskii zhurnal biomekhaniki, 9:1 (2005), 63–74 | MR

[13] T. B. Le, F. Sotiropoulos, “Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle”, Journal of computational physics, 244 (2013), 41–62 | DOI | MR | Zbl

[14] I. Borazjani, “A review of fluid-structure interaction simulations of prosthetic heart valves”, J. Long. Term. Eff. Med. Implants, 25:1–2 (2015), 75–93 | DOI | MR

[15] S. G. Stuchebrov, A. V. Batranin, I. A. Miloichikova, A. A. Krasnykh, I. B. Danilova, “Modernizatsiya tomograficheskoi ustanovki na baze mnogokanalnogo gazorazryadnogo detektora s submillimetrovym razresheniem”, Vestnik Natsionalnogo issledovatelskogo yadernogo universiteta MIFI, 6:1 (2017), 31–36

[16] A. V. Batranin, S. V. Chakhlov, B. I. Kapranov, V. A. Klimenov, D. V. Grinev, “Design of the x-ray micro-ct scanner tolmi-150-10 and its perspective application in non-destructive evaluation”, Applied Mechanics and Materials, 379 (2013), 3–10 | DOI

[17] C. S. Peskin, “The immersed boundary method”, Acta Numerica, 11 (2002), 479–517 | DOI | MR | Zbl

[18] D. Doldov, Y. Zakharov, Y. Shokin, “Numerical simulation of the performance of on artificial heart valve”, Russian journal of numerical analysis and mathematical modeling, 31:4 (2016), 229–238 | DOI | MR

[19] O. M. Belotserkovskii, Chislennoe modelirovanie v mekhanike sploshnykh sred, Fizmatlit, M., 1994, 448 pp.

[20] N. N. Yanenko, Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka. Sib. otdelenie, Novosibirsk, 1967, 196 pp.

[21] B. E. Griffith, “Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions”, International Journal for Numerical Methods in Biomedical Engineering, 28:3 (2012), 317–345 | DOI | MR | Zbl

[22] H. Mohammadi, R. Cartier, R. Mongrain, “3D physiological model of the aortic valve incorporating small coronary arteries”, Int. J. Numer. Method Biomed. Eng., 33:5 (2017) | DOI | MR

[23] K. Yu. Klyshnikov, E. A. Ovcharenko, D. A. Maltsev, I. Yu. Zhuravleva, “Sravnitelnaya kharakteristika gidrodinamicheskikh pokazatelei bioprotezov klapanov serdtsa «YuniLain» i «PeriKor»”, Klinicheskaya fiziologiya krovoobrascheniya, 2013, no. 1, 45–51