Diverse RNA pseudoknots exist for short stems only
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 526-533.

Voir la notice de l'article provenant de la source Math-Net.Ru

RNA secondary structure prediction including pseudoknotted structures of arbitrary types is a well-known NP-hard problem of computational biology. By limiting the possible types of pseudoknots the problem can be solved in polynomial time. According to the empirical thermodynamic parameters, the formation of a stem starts to decrease free energy of the structure only after the formation of the third stack of base pairs. Thus, the short stems may be unstable and provide a limited contribution to the overall free energy of a folded RNA molecule. Therefore, detailed analysis of stems in pseudoknots could facilitate reducing pseudoknots complexity. In this paper, we show that the pseudoknots from experimentally determined RNA spatial structures are primarily formed by short stems of 2–3 base pairs. The short stems tend to avoid hairpins and prefer internal loops that indicates that they could be energetically insignificant. An exclusion of short stems reduces the diversity of pseudoknots to two basic types which are H-knots and kissing loops.
@article{MBB_2018_13_2_a7,
     author = {E. Baulin and A. V. Korinevskaya and P. Tikhonova and M. Roytberg},
     title = {Diverse {RNA} pseudoknots exist for short stems only},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {526--533},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a7/}
}
TY  - JOUR
AU  - E. Baulin
AU  - A. V. Korinevskaya
AU  - P. Tikhonova
AU  - M. Roytberg
TI  - Diverse RNA pseudoknots exist for short stems only
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - 526
EP  - 533
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a7/
LA  - ru
ID  - MBB_2018_13_2_a7
ER  - 
%0 Journal Article
%A E. Baulin
%A A. V. Korinevskaya
%A P. Tikhonova
%A M. Roytberg
%T Diverse RNA pseudoknots exist for short stems only
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P 526-533
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a7/
%G ru
%F MBB_2018_13_2_a7
E. Baulin; A. V. Korinevskaya; P. Tikhonova; M. Roytberg. Diverse RNA pseudoknots exist for short stems only. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 526-533. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a7/

[1] W. B. Marzluff, “Twenty years of RNA: reflections on post-transcriptional regulation”, RNA (New York, NY), 21:4 (2015), 687–689 | DOI

[2] A. M. Eiring, J. G. Harb, P. Neviani, Ch. Garton, J. J. Oaks, R. Spizzo, Sh. Liu, S. Schwind, R. Santhanam, Ch. J. Hickey et al., “miR-328 Functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts”, Cell, 140:5 (2010), 652–665 | DOI

[3] D. P. Bartel, “MicroRNAs: target recognition and regulatory functions”, Cell, 136:2 (2009), 215–233 | DOI

[4] P. Kapranov, J. Cheng, S. Dike, D. A. Nix, R. Duttagupta, A. T. Willingham, P. F. Stadler, J. Hertel, J. Hackermuller, I. L. Hofacker et al., “RNA maps reveal new RNA classes and a possible function for pervasive transcription”, Science, 316:5830 (2007), 1484–1488 | DOI

[5] B. A. Shapiro, Ya. G. Yingling, W. Kasprzak, E. Bindewald, “Bridging the gap in RNA structure prediction”, Current opinion in structural biology, 17:2 (2007), 157–165 | DOI

[6] T. Rastogi, T. L. Beattie, J. E. Olive, R. A. Collins, “A long-range pseudoknot is required for activity of the Neurospora VS ribozyme”, The EMBO journal, 15:11 (1996), 2820 | DOI

[7] A. Ke, K. Zhou, F. Ding, J. H. Cate, J. A. Doudna, “A conformational switch controls hepatitis delta virus ribozyme catalysis”, Nature, 429 (2004), 201–205 | DOI

[8] P. L. Adams, M. R. Stahley, A. B. Kosek, J. Wang, S. A. Strobel, “Crystal structure of a self-splicing group I intron with both exons”, Nature, 430 (2004), 45–50 | DOI

[9] C. A. Theimer, C. A. Blois, J. Feigon, “Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function”, Molecular cell, 17:5 (2005), 671–682 | DOI

[10] A. Condon, B. Davy, B. Rastegari, Sh. Zhao, F. Tarrant, “Classifying RNA pseudoknotted structures”, Theoretical Computer Science, 320:1 (2004), 35–50 | DOI | MR | Zbl

[11] M. Zuker, “Mfold web server for nucleic acid folding and hybridization prediction”, Nucleic acids research, 31:13 (2003), 3406–3415 | DOI

[12] J. Reeder, M. Hochsmann, M. Rehmsmeier, B. Voss, R. Giegerich, “Beyond Mfold: recent advances in RNA bioinformatics”, Journal of biotechnology, 124:1 (2006), 41–55 | DOI

[13] E. Rivas, S. R. Eddy, “A dynamic programming algorithm for RNA structure prediction including pseudoknots”, Journal of molecular biology, 285:5 (1999), 2053–2068 | DOI

[14] R. B. Lyngsø, C. N.S. Pedersen, “Pseudoknots in RNA secondary structures”, Proceedings of the fourth annual international conference on Computational molecular biology, ACM, 2000, 201–209 | DOI

[15] R. B. Lyngsø, C. N. S. Pedersen, “RNA pseudoknot prediction in energy-based models”, Journal of computational biology, 7:3–4 (2000), 409–427 | DOI

[16] Z. Tan, W. Zhang, Ya. Shi, F. Wang, “RNA folding: structure prediction, folding kinetics and ion electrostatics”, Advance in Structural Bioinformatics, Springer Netherlands, 2015, 143–183 | DOI

[17] T. Xia, J. Jr. SantaLucia, M. E. Burkard, R. Kierzek, S. J. Schroeder, X. Jiao, Ch. Cox, D. H. Turner, “Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick base pairs”, Biochemistry, 37:42 (1998), 14719–14735 | DOI

[18] D. H. Mathews, J. Sabina, M. Zuker, D. H. Turner, “Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure”, Journal of molecular biology, 288:5 (1999), 911–940 | DOI

[19] E. Baulin, V. Yacovlev, D. Khachko, S. Spirin, M. Roytberg, “URS DataBase: universe of RNA structures and their motifs”, Database, 2016 (2016), baw085 | DOI

[20] M. Zuker, D. H. Mathews, D. H. Turner, “Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide”, RNA biochemistry and biotechnology, Springer Netherlands, 1999, 11–43 | DOI

[21] J. E. Andersen, R. C. Penner, C. M. Reidys, M. S. Waterman, “Topological classification and enumeration of RNA structures by genus”, Journal of mathematical biology., 67:5 (2013), 1261–1278 | DOI | MR | Zbl

[22] M. Bon, G. Vernizzi, H. Orl, A. Zee, “Topological classification of RNA structures”, Journal of molecular biology, 379:4 (2008), 900–911 | DOI

[23] E. A. Rødland, “Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence”, Journal of Computational Biology, 13:6 (2006), 1197–1213 | DOI | MR

[24] C. M. Reidys, F. W. D. Huang, J. E. Andersen, R. C. Penner, P. F. Stadler, M. E. Nebel, “Topology and prediction of RNA pseudoknots”, Bioinformatics, 27:8 (2011), 1076–1085 | DOI

[25] J. K. H. Chiu, Y. P. P. Chen, “Conformational features of topologically classified RNA secondary structures”, PloS one, 7:7 (2012), e39907 | DOI

[26] H. M. Berman, J. Westbrook, Z. Feng, G. Gillil, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, “The protein data bank”, Nucleic acids research, 28:1 (2000), 235–242 | DOI | MR

[27] N. B. Leontis, C. L. Zirbel, “Nonredundant 3D structure datasets for RNA knowledge extraction and benchmarking”, RNA 3D structure analysis and prediction, Springer, Berlin–Heidelberg, 2012, 281–298 | DOI