Reconstruction of the human hand functional structure based on a magnetomyogram
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 480-489.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new method of magnetomyography data analysis is proposed. The method is based on the Fourier transform of prolonged time series and on the massive solution of the inverse problem for all spectral components. For the method testing the following experiment was proposed. The subject clenched and relaxed the hand for five minutes, holding the handle, fixed on the table. Magnetomyograms were registered near the hand using the 7-channel SQUID-magnetometer based on the axial second-order gradiometers. The subject and experimental setup were placed inside a thick-walled aluminum camera, designed for shielding from an alternating electromagnetic field. No shielding from static magnetic field was used. Magnetomyograms with amplitude 20 picoTesla were registered in broad frequency band (up to 500 Hz), signal to noise ratio was more than 20. After filtering and extracting of clench/relax periods two synthetic 135 seconds myograms were formed. The multichannel spectra were calculated, and the functional tomograms were estimated. In case of the relaxed hand, no significant object was reconstructed. In case of the clenched hand, the 3D-object was extracted, representing the functional structure of the muscles, tensed in this experiment. The method can be used for diagnostics and study of the human muscle system.
@article{MBB_2018_13_2_a4,
     author = {M. N. Ustinin and S. D. Rykunov and M. A. Polikarpov and A. Y. Yurenya and S. P. Naurzakov and A. P. Grebenkin and V. Ya. Panchenko},
     title = {Reconstruction of the human hand functional structure based on a magnetomyogram},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {480--489},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a4/}
}
TY  - JOUR
AU  - M. N. Ustinin
AU  - S. D. Rykunov
AU  - M. A. Polikarpov
AU  - A. Y. Yurenya
AU  - S. P. Naurzakov
AU  - A. P. Grebenkin
AU  - V. Ya. Panchenko
TI  - Reconstruction of the human hand functional structure based on a magnetomyogram
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - 480
EP  - 489
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a4/
LA  - ru
ID  - MBB_2018_13_2_a4
ER  - 
%0 Journal Article
%A M. N. Ustinin
%A S. D. Rykunov
%A M. A. Polikarpov
%A A. Y. Yurenya
%A S. P. Naurzakov
%A A. P. Grebenkin
%A V. Ya. Panchenko
%T Reconstruction of the human hand functional structure based on a magnetomyogram
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P 480-489
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a4/
%G ru
%F MBB_2018_13_2_a4
M. N. Ustinin; S. D. Rykunov; M. A. Polikarpov; A. Y. Yurenya; S. P. Naurzakov; A. P. Grebenkin; V. Ya. Panchenko. Reconstruction of the human hand functional structure based on a magnetomyogram. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 480-489. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a4/

[1] J. Malmivuo, R. Plonsey, Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields, Oxford University Press, New York, 1995, 641 pp. | DOI

[2] M. B. I. Raez, M. S. Hussain, F. Mohd-Yasin, “Techniques of EMG signal analysis: detection, processing, classification and applications”, Biol. Proced. Online, 8:1 (2006), 11–35 | DOI

[3] R. H. Chowdhury, M. B.I. Reaz, M. A. B. M. Ali, A. A. A. Bakar, K. Chellappan, T. G. Chang, “Surface Electromyography Signal Processing and Classification Techniques”, Sensors (Basel), 13:9 (2013), 12431–12466 | DOI

[4] D. Cohen, E. Givler, “Magnetomyography: magnetic fields around the human body produced by skeletal muscles”, Appl. Phys. Lett., 21:3 (1972), 114 | DOI

[5] J. M. van Egeraat, R. N. Friedman, J. P. Wikswo Jr., “Magnetic field of a single muscle fiber. First measurements and a core conductor model”, Biophys. J., 57:3 (1990), 663–667 | DOI | MR

[6] M. A. C. Garcia, O. Baffa, “Magnetic fields from skeletal muscles: a valuable physiological measurement?”, Front. Physiol., 6 (2015), 228 | DOI

[7] P. J. Broser, S. Knappe, D. S. Kajal, N. Noury, O. Alem, V. Shah, C. Braun, “Optically pumped magnetometers for magneto-myography to study the innervation of the hand”, IEEE Trans. Neural Syst. Rehabil. Eng., 26:11 (2018), 2226–2230 | DOI

[8] H. Heidari, S. Zuo, A. Krasoulis, K. Nazarpour, “CMOS Magnetic Sensors for Wearable Magnetomyography”, 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC (Honolulu, 2018), 2116–2119 | DOI

[9] K. van den Doel, U. M. Ascher, A. Curt, J. Steeves, D. K. Pai, “Computed myography (CMG): Three dimensional reconstruction of motor functions from surface EMG data”, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Vancouver, 2008), 550–554 | DOI | MR

[10] Y. Liu, Y. Ning, S. Li, P. Zhou, W. Z. Rymer, Y. Zhang, “Three-dimensional innervation zone imaging from multi-channel surface EMG recordings”, Int. J. Neural Syst., 25:6 (2015), 1550024 | DOI

[11] R. R. Llinás, M. N. Ustinin, S. D. Rykunov, A. I. Boyko, V. V. Sychev, K. D. Walton, G. M. Rabello, J. Garcia, “Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data”, Front. Neurosci., 9:373 (2015) | DOI

[12] R. R. Llinás, M. Ustinin, S. D. Rykunov, K. D. Walton, G. M. Rabello, J. Garcia, A. I. Boyko, V. V. Sychev, “Non-invasive whole body imaging using magnetography. Program No. 520.11”, 2018 Neuroscience Meeting Planner, Society for Neuroscience, San Diego, CA, 2018

[13] M. Frigo, S. G. Johnson, “The Design and Implementation of FFTW3”, Proceedings of the IEEE, 93:2 (2005), 216–231 | DOI

[14] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, E. Moulines, “A blind source separation technique using second-order statistics”, IEEE Trans. Signal Processing, 45 (1997), 434–444 | DOI

[15] M. W. Garrett, “Calculation of fields, forces, and mutual inductances of current systems by elliptic integrals”, J. Appl. Phys., 34 (1963), 2567–2573 | DOI

[16] W. Andra, H. Nowak, Magnetism in medicine, a handbook, Wiley-VCH, 2007, 630 pp. | DOI