The application of a distributed model of active media for the analysis of urban ecosystems development
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 454-465.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of spatiotemporal self-organization of urban ecosystems as a superposition of conjugate active media that takes into account inhomogeneities of anthropogenic and natural factors is proposed. The type of ecosystems under assumption is characterized by a high rate of population growth and density due to the concentration of residential, industrial, commercial and other objects, as well as communication media. These conditions reduce the "buffer capacity" of natural subsystems and increase the nonlinearity and consequently the instability of system processes within the boundaries of urban ecosystems. The model is based on the system of FitzHugh-Nagumo equations, modified by the authors so to take into account inhomogeneities of anthropogenic (activator) and natural (inhibitor) factors. The validity of the application of an equation of this type is determined by the relative simplicity of the system analysis of two equations of the "activator-inhibitor" type. The previously published analytical studies of a system of equations of this type made it possible to create on its basis an adequate model for urban ecosystems development. The numerical solution of the system in the two-dimensional case was carried out in a rectangular region. On the boundaries of the domain the homogeneous Neumann conditions were given, the initial distribution was assumed to be known. The solution was carried out by the method of evolutionary factorization. The iterative process continued until complete stationing. The developed model is used for analysis and forecasting the development of the territory of New Moscow. The arrays of values of the control parameters of the model, which were subsequently taken into account in numerical implementation, were obtained on the basis of the aerial survey data and maps of the studied territories translated into digital form using the C++ authoring application, which allows to create text files with image-based data. The code was created in the OpenCL environment and implemented using AMD FIREPRO graphics processors. Graphical interpretation was carried out using the "Serfer" program.
@article{MBB_2018_13_2_a3,
     author = {A. E. Sidorova and N. T. Levashova and A. E. Semina and A. A. Melnikova},
     title = {The application of a distributed model of active media for the analysis of urban ecosystems development},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {454--465},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a3/}
}
TY  - JOUR
AU  - A. E. Sidorova
AU  - N. T. Levashova
AU  - A. E. Semina
AU  - A. A. Melnikova
TI  - The application of a distributed model of active media for the analysis of urban ecosystems development
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - 454
EP  - 465
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a3/
LA  - en
ID  - MBB_2018_13_2_a3
ER  - 
%0 Journal Article
%A A. E. Sidorova
%A N. T. Levashova
%A A. E. Semina
%A A. A. Melnikova
%T The application of a distributed model of active media for the analysis of urban ecosystems development
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P 454-465
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a3/
%G en
%F MBB_2018_13_2_a3
A. E. Sidorova; N. T. Levashova; A. E. Semina; A. A. Melnikova. The application of a distributed model of active media for the analysis of urban ecosystems development. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 454-465. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a3/

[1] J. W. Forrester, Urban Dynamics, MIT Press, Cambridge, Massachusetts, 290 pp.

[2] S. A. Makhov, “Mathematical modeling of world dynamics and sustainable development on the example of the Forrester's model”, Keldysh Institute preprints, 2005, 006 (in Russ.)

[3] Jianguo Wu, John L. David, “A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications”, Ecological Modeling, 153 (2002), 7–26 | DOI

[4] Y. Changlin, Y. Dingquan, Z. Honghui, Y. Shengjing, C. Guanghui, “Simulation of urban growth using a cellular automata-based model in a developing nation's region”, International Journal of Engineering and Advanced Technology, 2:3 (2012), 453–460

[5] H. Lizhong, T. Lina, C. Shenghui, Y. Kai, “Simulating Urban Growth Using the SLEUTH Model in a Coastal Peri-Urban District in China”, Sustainability, 2014, no. 6, 3899–3914

[6] N. Bihamta, A. Soffianian, S. Fakherran, M. Gholamalifarm, “Using the SLEUTH Urban Growth Model to Simulate Future Urban Expansion of the Isfahan Metropolitan Area, Iran”, Journal of the Indian Society of Remote Sensing, 43 (2015), 407–414 | DOI

[7] S. Alkheder, J. Shan, “Cellular Automata Urban Growth Simulation and Evaluation - A Case Study of Indianapolis”, Proceedings of the 8th International Conference on GeoComputation (University of Michigan, United States of America, 31 July - 3 August 2005) (accessed 22.11.2018) http://www.geocomputation.org/2005/Alkheder.pdf

[8] E. Vaz, J. J. Arsanjani, “Predicting Urban Growth of the Greater Toronto Area - Coupling a Markov Cellular Automata with Document Meta-Analysis”, Journal of Environmental Informatics, 25 (2015), 71–80 | DOI

[9] A. G. O. Yeh, X. Li, “Urban Simulation Using Neural Networks and Cellular Automata for Land Use Planning”, ISPRS Commission IV, Symposium 2002 Geospatial Theory: Processing and Applications (July 9–12, 2002, Ottawa, Canada), eds. Costas Armenakis, Y.C. Lee, 2002, 36 (accessed 22.11.2018) http://www.isprs.org/proceedings/XXXIV/part4/pdfpapers/036.pdf | Zbl

[10] A. N. Kolmogorov, I. G. Petrovsky, N. S. Piskunov, “Investigation of the diffusion equation connected with the increase of matter and its application to a single biological problem”, Bull. Moscow State University, Section A, 1:6 (1937), 1–26

[11] Ya. B. Zeldovich, D. A. Frank-Kamenetsky, “On the theory of uniform flame propagation”, Jour. Phys. Chemistry, 12:1 (1938), 100–105

[12] Yelkin Y. E., “Autowave processes”, Mathematical Biology and Bioinformatics, 1:1 (2006), 27–40 (in Russ.) | DOI

[13] A. Hodgkin, A. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol., 117 (1952), 500–544 | DOI

[14] F. I. Ataullakhanov, G. T. Guria, “The spatial aspects of blood coagulation dynamics. Hypothesis”, Biophysics, 39:1 (1994), 89–95 (in Russ.)

[15] K. G. Mann, “Is there value in kineticmodeling of thrombin generation? Yes”, J. Thromb. Haemost., 10:8 (2012), 1463–1469 | DOI

[16] H. C. Hemker, S. Kerdelo, R. M.W. Kremers, Is there value in kinetic modeling of thrombin generation?, J. Thromb. Haemost., 10:8 (2012), 1470–1477 | DOI

[17] R. FitzHugh, “Mathematical models of threshold phenomena in the nerve membrane”, Bull. Math. Biophysics, 1955, no. 17, 257–278 | DOI

[18] J. Nagumo, S. Arimoto, S. Yoshizawa, “An active pulse transmission line simulating nerve axon”, Proc. IRE, 50 (1962), 2061–2070 | DOI

[19] R. FitzHugh, “Impulses and Physiological States in Theoretical Models of Nerve Membrane”, Biophysical Journal, 1 (1961), 445–466 | DOI

[20] R. FitzHugh, “Mathematical models of excitation and propagation in nerve”, Biological Engineering, ed. Schwan H. P., McGraw-Hill Book Co., N.Y., 1969, 1–85

[21] V. A. Vasiliev, Yu. M. Romanovsky, V. G. Yakhno, Autowave processes, Nauka, M., 1987, 240 pp. (in Russ.)

[22] A. E. Sidorova, N. T. Levashova, A. A. Mel'nikova, L. V. Yakovenko, “A model of a human dominated urban ecosystem as an active medium”, Biophysics, 60:3 (2015), 466–473 | DOI

[23] A. E. Sidorova, Yu. V. Mukhartova, L. V. Yakovenko, “An Urban Ecosystem as a Superposition of Interrelated Active Media”, Moscow University Physics Bulletin, 69:5 (2014), 392–400 | DOI

[24] A. E. Sidorova, N. T. Levashova, A. A. Mel'nikova, N. N. Deryugina, A. E. Semina, “Autowave Self-Organization in Heterogeneous Natural-Anthropogenic Ecosystems”, Moscow University Physics Bulletin, 71:6 (2016), 562–568 | DOI

[25] N. Levashova, A. Mel'nikova, A. Semina, A. Sidorova, “Autowave mechanisms of structure formation in urban ecosystems as the process of self-organization in active media”, Communication on Applied Mathematics and Computation, 31:1 (2017), 32–42 | Zbl

[26] A. E. Sidorova, N. T. Levashova, A. A. Mel'nikova, A. E. Semina, “Model of the structure formation of urine ecosystems as a process of autowave self-organization in active media”, Mathematical Biology and Bioinformatics, 12:1 (2017), 186–197 (in Russ.) | DOI

[27] N. T. Levashova, A. A. Mel'nikova, D. V. Lukyanenko, A. E. Sidorova, S. V. Bytsyura, “Modeling of Urboecosystems as Self-Organization Processes”, Math. modeling, 29:11 (2017), 40–52 (in Russ.) | MR | Zbl

[28] V. S. Savenko, Geochemical aspects of sustainable development, M., 2003, 180 pp. (in Russ.)

[29] N. T. Levashova, A. A. Mel'nikova, “Step-Like Contrast Structure in a Singularly Perturbed System of Parabolic Equations”, Differential equations, 51:3 (2015), 342–361 | DOI | MR | Zbl

[30] V. F. Butuzov, N. T. Levashova, A. A. Mel'nikova, “A steplike contrast structure in a singularly perturbed system of elliptic equation”, Computational mathematics and mathematical physics, 53:9 (2013), 1239–1259 | DOI | MR | Zbl

[31] A. O. Orlov, N. T. Levashova, N. N. Nefedov, “Solution of Contrast Structure Type for a Parabolic Reaction-Diffusion Problem in a Medium with Discontinuous Characteristics”, Differential equations, 54:5 (2018), 669–686 | DOI | MR | Zbl

[32] N. T. Levashova, N. N. Nefedov, A. O. Orlov, “Stationary reaction-diffusion equation with a discontinuous term”, Computational Mathematics and Mathematical Physics, 57:5 (2017), 854–866 (in Russ.) | DOI | MR | Zbl

[33] Moscow Investment Portal, (accessed 22.11.2018) https://investmoscow.ru/city-projects/aip/

[34] Complex urban policy and the construction of the city of Moscow, (in Russ.) (accessed 22.11.2018) https://stroi.mos.ru/infographics/novoi-moskvie-piat-liet-1/

[35] Moscow Map, (in Russ.) (accessed 22.11.2018) https://yandex.ru/maps/213/moscow/

[36] Map of the cottage settlement Marseille, \date 22.11.2018 (in Russ.) (accessed 22.11.2018) http://p-marsel.ru/map/

[37] General Plan of Moscow. Western Valley the Suburb, (in Russ.) (accessed 22.11.2018) http://zapad.aprigorod.ru/genplan/

[38] Norms and rules for designing the planning and development of Moscow (MGSN 1.01-99), (in Russ.) (accessed 22.11.2018) http://docs.cntd.ru/document/1200003977

[39] N. N. Kalitkin, P. V. Koryakin, Methods of mathematical physics, v. 2, Numerical methods, “Academy”, M., 2013, 304 pp. (in Russ.) | MR