Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_2_a20, author = {Y. D. Jagtap and N. Adlakha}, title = {Simulation of buffered advection diffusion of calcium in a hepatocyte cell}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {609--619}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a20/} }
TY - JOUR AU - Y. D. Jagtap AU - N. Adlakha TI - Simulation of buffered advection diffusion of calcium in a hepatocyte cell JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - 609 EP - 619 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a20/ LA - en ID - MBB_2018_13_2_a20 ER -
Y. D. Jagtap; N. Adlakha. Simulation of buffered advection diffusion of calcium in a hepatocyte cell. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 609-619. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a20/
[1] T. A. Rooney, E. J. Sass, A. P. Thomas, “Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes”, Journal of Biological Chemistry, 265 (1990), 10792–10796
[2] I. Garcin, T. Tordjmann, “Calcium signalling, liver regeneration”, International Journal of Hepatology, 2012 (2012), 1–6 | DOI
[3] M. S. Joel, K. Jafri, “On the roles of Ca$^{2+}$ diffusion, Ca$^{2+}$ buffers, and the endoplasmic reticulum in IP3-induced Ca$^{2+}$ waves”, Biophysical Journal, 69 (1995), 2139–2153 | DOI
[4] G. Swillens, S. Clair, C. Tordjmann, T. Dupont, “Hierarchical organization of calcium signals in hepatocytes : from experiments to models”, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1498 (2000), 134–152 | DOI
[5] J. Sneyd, “Calcium buffering and diffusion: on the resolution of an outstanding problem”, Biophysical Journal, 67 (1994), 4 | DOI
[6] S. Pardasani, K. R. Tewari, “Finite element model to study two dimensional unsteady state cytosolic calcium diffusion in presence of excess buffers”, IAENG International Journal of Applied Mathematics, 40 (2010), 108–112 | MR | Zbl
[7] A. Adlakha, N. Jha, “Finite element model to study the effect of exogenous buffer on calcium dynamics in dendritic spines”, International Journal of Modeling, Simulation, and Scientific Computing, 5 (2014), 1350027 | DOI
[8] M. Adlakha, N. Kotwani, “Modeling of endoplasmic reticulum and plasma membrane Ca$^{2+}$ uptake and release fluxes with excess buffer approximation (EBA) in fibroblast cell”, International Journal of Computational Materials Science and Engineering, 6 (2017), 1750004 | DOI
[9] M. Adlakha, N. Kotwani, “Finite element model to study the effect of buffers, source amplitude and source geometry on spatio-temporal calcium distribution in fibroblast cell”, Journal of Medical Imaging and Health Informatics, 4 (2014), 840–847 | DOI
[10] B. K. Adlakha, N. Mehta, M. N. Jha, “Two-dimensional finite element model to study calcium distribution in astrocytes in presence of VGCC and excess buffer”, Int. J. Model. Simul. Sci. Comput., 4 (2013), 1250030 | DOI | MR
[11] B. K. Adlakha, N. Mehta, M. N. Jha, “Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer”, International Journal of Biomathematics, 7 (2014), 1450031 | DOI | MR | Zbl
[12] P. A. Pardasani, K. R. Naik, “One Dimensional Finite Element Model to Study Calcium Distribution in Oocytes in Presence of VGCC, RyR and Buffers”, J. Medical Imaging Health Informatics, 5 (2015), 471–476 | DOI | MR
[13] K. Adlakha, N. Pathak, “Finite Element Model to Study Calcium Signaling in Cardiac Myocytes Involving Pump, Leak and Excess Buffer”, Journal of Medical Imaging and Health Informatics, 5 (2015), 1–6 | DOI | MR
[14] K. Adlakha, N. Pathak, “Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes”, Alexandria Journal of Medicine, 52 (2016), 261–268 | DOI
[15] Y. D. Adlakha, N. Jagtap, “Finite volume simulation of two dimensional calcium dynamics in a hepatocyte cell involving buffers and fluxes”, Commun. Math. Biol. Neurosci., 2018 (2018), 1–16
[16] A. Adlakha, N. Jha, “Two-dimensional finite element model to study unsteady state Ca$^{2+}$ diffusion in neuron involving ER LEAK and SERCA”, International Journal of Biomathematics, 89 (2015), 1550002 | MR
[17] P. A. Pardasani, K. R. Naik, “One dimensional finite element method approach to study effect of ryanodine receptor and serca pump on calcium distribution in oocytes”, Journal of Multiscale Modelling, 5 (2013), 1350007 | DOI | MR
[18] S. Pardasani, K. R. Panday, “Finite element model to study the mechanics of calcium regulation in oocyte”, Journal of Mechanics in Medicine and Biology, 14 (2014), 1450022 | DOI
[19] N. Pardasani, K. R. Manhas, “Modelling mechanism of calcium oscillations in pancreatic acinar cells”, Journal of Bioenergetics and Biomembranes, 46 (2014), 403–420 | DOI
[20] N. Sneyd, J. Pardasani, K. R. Manhas, “Modelling the transition from simple to complex Ca$^{2+}$ oscillations in pancreatic acinar cells”, Journal of Biosciences, 39 (2014), 463–484 | DOI
[21] B. Adlakha, N. Mehta, M. N. Jha, “Finite volume model to study the effect of buffer on cytosolic Ca$^{2+}$ advection diffusion”, Int. J. of Eng. and Nat. Sci., 4 (2010), 60–163
[22] K. Adlakha, N. Pathak, “Finite Element Simulation of Advection Diffusion of Calcium in Myocyes Involving Influx and Excess Buffer”, Advances in Computational Sciences and Technology, 10 (2017), 11–23 | MR
[23] S. Pardasani, K. R. Panday, “Finite Element Model to Study Effect of Advection Diffusion and Na$^+$/Ca$^{2+}$ Exchanger on Ca$^{2+}$ Distribution in Oocytes”, Journal of Medical Imaging and Health Informatics, 3 (2013), 374–379 | DOI
[24] J. P. Sneyd, J. Keener, Mathematical physiology, Springer, 1998, 309–313 | MR
[25] R. Pochet, R. Donato, J. Haiech, C.W. Heizmann, V. Gerke (eds.), Calcium: The molecular basis of calcium action in biology and medicine, v. 3, Springer Science Business Media, 2011, 73–94
[26] A. P. Bird, G. S. T. J. Hajnoczky, G. Gaspers, R. Thomas, “Spatial and temporal aspects of cellular calcium signaling”, The FASEB Journal, 1996, 1505–1517
[27] H. K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method, Pearson Education, 2007