The mathematical model of disturbance of energy metabolism in brain during development of neurodegenerative diseases: a proposed mechanism of cell death
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 591-608.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a theoretical study of the failure of energy metabolism in nervous tissue on a detailed biophysical model of metabolic coupling between neurons and astrocytes under afferent stimulation simulating by the release of glutamate into the presynaptic cleft. The main result of the model study is the detection of the phenomenon of adenylate collapse, the essence of which is the irreversible drop of ATP concentration after reaching the critical threshold value. This effect occurs as a result of the reversing of the reaction catalyzed by adenylate kinase. At high ATP values, the reaction equilibrium is shifted towards the formation of ADP from ATP and AMP. When the threshold is reached, the equilibrium shifts in the opposite direction, i.e., the formation of AMP and ATP from ADP occurs. If this situation is accompanied by a high consumption of ATP, the entire pool of adenine nucleotides goes into AMP. However, AMP is not phosphorylated, unlike ADP in glycolysis and oxidative phosphorylation, so the system quickly comes to depletion of ATP. Thus, adenylate collapse can be a new mechanism of the selective cell death in the development of neurodegenerative diseases.
@article{MBB_2018_13_2_a19,
     author = {I. E. Mysin and I. Yu. Popova and A. A. Osipov},
     title = {The mathematical model of disturbance of energy metabolism in brain during development of neurodegenerative diseases: a proposed mechanism of cell death},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {591--608},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a19/}
}
TY  - JOUR
AU  - I. E. Mysin
AU  - I. Yu. Popova
AU  - A. A. Osipov
TI  - The mathematical model of disturbance of energy metabolism in brain during development of neurodegenerative diseases: a proposed mechanism of cell death
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - 591
EP  - 608
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a19/
LA  - ru
ID  - MBB_2018_13_2_a19
ER  - 
%0 Journal Article
%A I. E. Mysin
%A I. Yu. Popova
%A A. A. Osipov
%T The mathematical model of disturbance of energy metabolism in brain during development of neurodegenerative diseases: a proposed mechanism of cell death
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P 591-608
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a19/
%G ru
%F MBB_2018_13_2_a19
I. E. Mysin; I. Yu. Popova; A. A. Osipov. The mathematical model of disturbance of energy metabolism in brain during development of neurodegenerative diseases: a proposed mechanism of cell death. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 591-608. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a19/

[1] A. P. Kudin, G. Zsurka, C. E. Elger, W. S. Kunz, “Mitochondrial involvement in temporal lobe epilepsy”, Exp. Neurol., 218:2 (2009), 326–332 | DOI

[2] S. Y. Jeon, D. Yi, M. S. Byun, H. J. Choi, H. J. Kim, J. H. Lee, H. Baek, Y. M. Choe, Y. Lee, J. I. Woo, D. Y. Lee, “Differential patterns of regional cerebral hypometabolism according to the level of cerebral amyloid deposition in patients with amnestic mild cognitive impairment”, Neurosci. Lett., 632 (2016), 104–108 | DOI

[3] J. W. Williamson, A. Pan, I. Cavus, H. P. Hetherington, H. Zaveri, O. A. Petroff, D. D. Spencer, “Neurometabolism in human epilepsy”, Epilepsia, 49:3 (2008), 31–41 | DOI

[4] Y. Zilberter, M. Zilberter, “The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction”, J. Neurosci. Res., 95:11 (2017), 2217–2235 | DOI

[5] H. Onodera, K. Iijima, K. Kogure, “Mononucleotide metabolism in the rat brain after transient ischemia”, J. Neurochem., 46:6 (1986), 1704–1710 | DOI

[6] M. Erecinska, I. A. Silver, “Ions and energy in mammalian brain”, Prog. Neurobiol., 43:1 (1994), 37–71 | DOI

[7] N. J. Gerkau, C. Rakers, G. C. Petzold, C. R. Rose, “Differential effects of energy deprivation on intracellular sodium homeostasis in neurons and astrocytes”, J. Neurosci. Res., 95:11 (2017), 2275–2285 | DOI

[8] L. B. Tovar-y-Romo, A. Penagos-Puig, J. O. Ramirez-Jarquin, “Endogenous recovery after brain damage: molecular mechanisms that balance neuronal life/death fate”, J. Neurochem., 136:1 (2016), 13–27 | DOI

[9] N. M. C. Connolly, B. D'Orsi, N. Monsefi, H. J. Huber, J. H. Prehn, “Computational analysis of AMPK-mediated neuroprotection suggests acute excitotoxic bioenergetics and glucose dynamics are regulated by a minimal set of critical reactions”, PLoS ONE, 11:2 (2016), e0148326 | DOI

[10] N. M. C. Connolly, J. H. M. Prehn, “The metabolic response to excitotoxicity — lessons from single-cell imaging”, J. Bioenerg. Biomembr., 47:1–2 (2015), 75–88 | DOI

[11] R. Jolivet, J. S. Coggan, I. Allaman, P. J. Magistretti, “Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble”, PLoS Comput. Biol., 11:2 (2015), e1004036 | DOI

[12] A. Aubert, R. Costalat, “Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism”, J. Cereb. Blood Flow Metab., 25:11 (2005), 1476–1490 | DOI

[13] B. S. Chander, V. S. Chakravarthy, “A computational model of neuro-glio-vascular loop interactions”, PLoS ONE, 7:11 (2012), e48802 | DOI

[14] R. Heinrich, S. Schuster, The regulation of cellular systems, Springer US, Boston, MA, 1996, 291 pp.

[15] A. Aubert, R. Costalat, R. Valabregue, “Modelling of the coupling between brain electrical activity and metabolism”, Acta Biotheor., 49:4 (2001), 301–326 | DOI

[16] A. Aubert, R. Costalat, “A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging”, Neuroimage, 17:3 (2002), 1162–1181 | DOI | MR

[17] L. Petzold, “Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations”, SIAM J. Sci. and Stat. Comput., 4:1 (1983), 136–148 | DOI | MR | Zbl

[18] A. C. Hindmarsh, “ODEPACK, A Systematized Collection of ODE Solvers”, IMACS Transactions on Scientific Computation, 1 (1983), 55–64 | MR

[19] N. M. C. Connolly, H. Dussmann, U. Anilkumar, H. J. Huber, J. H. Prehn, “Single-cell imaging of bioenergetic responses to neuronal excitotoxicity and oxygen and glucose deprivation”, J. Neurosci., 34:31 (2014), 10192–10205 | DOI

[20] K. A. Kasischke, H. D. Vishwasrao, P. J. Fisher, W. R. Zipfel, W. W. Webb, “Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis”, Science, 305:5680 (2004), 99–103 | DOI

[21] E. Samokhina, I. Popova, A. Malkov, A. I. Ivanov, D. Papadia, A. Osypov, M. Molchanov, S. Paskevich, A. Fisahn, M. Zilberter, Y. Zilberter, “Chronic inhibition of brain glycolysis initiates epileptogenesis”, J. Neurosci. Res., 95:11 (2017), 2195–2206 | DOI

[22] T. G. Bidder, “Hexose translocation across the blood-brain interface: configurational aspects”, J. Neurochem., 15:8 (1968), 867–874 | DOI

[23] H. S. Bachelard, A. G. Clark, M. F. Thompson, “Cerebral-cortex hexokinase”, Elucidation of reaction mechanisms by substrate and dead-end inhibitor kinetic analysis. Biochem. J., 123:5 (1971), 707–715

[24] W. H. Oldendorf, “Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection”, Am. J. Physiol., 221:6 (1971), 1629–1639 | DOI

[25] R. K. Crane, A. Sols, “The non-competitive inhibition of brain hexokinase by glucose-6-phosphate and related compounds”, J. Biol. Chem., 210:2 (1954), 597–606

[26] A. N. Wick, D. R. Drury, T. N. Morita, “2-Deoxyglucose; a metabolic block for glucose”, Proc. Soc. Exp. Biol. Med., 89:4 (1955), 579–582 | DOI

[27] J. Brown, “Effects of 2-deoxyglucose on carbohydrate metablism: review of the literature and studies in the rat”, Metab. Clin. Exp., 11 (1962), 1098–1112

[28] C. E. Stafstrom, A. Roopra, T. P. Sutula, “Seizure suppression via glycolysis inhibition with 2-deoxy-D-glucose (2DG)”, Epilepsia, 49:8, Suppl. (2008), 97–100 | DOI

[29] E. Samokhina, A. Malkov, A. Samokhin, I. Popova, Selective hippocampal cell damage and mossy fiber sprouting induced by chronic impairment of cerebral glucose metabolism, in press

[30] A. Malkov, A. I. Ivanov, S. Buldakova, T. Waseem, I. Popova, M. Zilberter, Y. Zilberter, “Seizure-induced reduction in glucose utilization promotes brain hypometabolism during epileptogenesis”, Neurobiol. Dis., 116 (2018), 28–38 | DOI

[31] G. Oz, M. DiNuzzo, A. Kumar, A. Moheet, E. R. Seaquist, “Revisiting glycogen content in the human brain”, Neurochem. Res., 40:12 (2015), 2473–2481 | DOI

[32] J. Langer, N. J. Gerkau, A. Derouiche, C. Kleinhans, B. Moshrefi-Ravasdjani, M. Fredrich, K. W. Kafitz, G. Seifert, C. Steinhauser, C. R. Rose, “Rapid sodium signaling couples glutamate uptake to breakdown of ATP in perivascular astrocyte endfeet”, Glia, 65:2 (2017), 293–308 | DOI

[33] T. Shinotsuka, M. Yasui, M. Nuriya, “Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia”, Biochem. Biophys. Res. Commun., 444:2 (2014), 171–176 | DOI

[34] J. Fan, T. M. Dawson, V. L. Dawson, “Cell death mechanisms of neurodegeneration”, Adv. Neurobiol., 15 (2017), 403–425 | DOI